814 resultados para Semantic Web, Cineca,data warehouse, Università italiane
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Information retrieval is a recurrent subject in search of information science. This kind of study aim to improve results in both searches on the Web and in various other digital information environment. In this context, the Iterative Representation model suggested for digital repositories, appears as a differential that changes the paradigm of self-archiving of digital objects, creating a concept of relationship between terms that link the user thought the material deposited in the digital environment. The links effect by the Iterative Representation aided Assisted Folksonomy generate a shaped structure that connects networks, vertically and horizontally, the objects deposited, relying on some kind of structure for representing knowledge of specialty areas and therefore, creating an information network based on knowledge of users. The network of information created, called the network of tags is dynamic and effective a different model of information retrieval and study of digital information repositories.Keywords Digital Repositories; Iterative Representation; Folksonomy; Folksonomy Assisted; Semantic Web; Network Tags.
Resumo:
Different vocabularies and contexts are barriers to the communication between people or software systems. It is necessary a common understanding in the domain that is talked about, so it can be obtained a correct interpretation of the information. An ontology formally models the structure of a domain and turn explicit the shared understanding in the form of concepts and relations that emerge from its observation. Constitutes a sort of framework used in the mapping to the meaning of the information that is talked about. The formal accuracy in which they are defined, by means of axioms, allow machine processing, implicating in systems interoperability. Structured this way, the knowledge is easily transferred between people or systems from different contexts. Ontologies present several applications nowadays. They are considered the infra-structure to the Semantic Web, which is composed by Web resources with embedded meaning. Thereby, the automatic execution of complex tasks is allowed, with the benefit from the effective communication between Web software agents. Among other applications, they also have been used to structure the knowledge generated from several areas, like Biology and Software Engineering.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The automatic disambiguation of word senses (i.e., the identification of which of the meanings is used in a given context for a word that has multiple meanings) is essential for such applications as machine translation and information retrieval, and represents a key step for developing the so-called Semantic Web. Humans disambiguate words in a straightforward fashion, but this does not apply to computers. In this paper we address the problem of Word Sense Disambiguation (WSD) by treating texts as complex networks, and show that word senses can be distinguished upon characterizing the local structure around ambiguous words. Our goal was not to obtain the best possible disambiguation system, but we nevertheless found that in half of the cases our approach outperforms traditional shallow methods. We show that the hierarchical connectivity and clustering of words are usually the most relevant features for WSD. The results reported here shed light on the relationship between semantic and structural parameters of complex networks. They also indicate that when combined with traditional techniques the complex network approach may be useful to enhance the discrimination of senses in large texts. Copyright (C) EPLA, 2012
Resumo:
Die vorliegende Dissertation analysiert die Middleware- Technologien CORBA (Common Object Request Broker Architecture), COM/DCOM (Component Object Model/Distributed Component Object Model), J2EE (Java-2-Enterprise Edition) und Web Services (inklusive .NET) auf ihre Eignung bzgl. eng und lose gekoppelten verteilten Anwendungen. Zusätzlich werden primär für CORBA die dynamischen CORBA-Komponenten DII (Dynamic Invocation Interface), IFR (Interface Repository) und die generischen Datentypen Any und DynAny (dynamisches Any) im Detail untersucht. Ziel ist es, a. konkrete Aussagen über diese Komponenten zu erzielen, und festzustellen, in welchem Umfeld diese generischen Ansätze ihre Berechtigung finden. b. das zeitliche Verhalten der dynamischen Komponenten bzgl. der Informationsgewinnung über die unbekannten Objekte zu analysieren. c. das zeitliche Verhalten der dynamischen Komponenten bzgl. ihrer Kommunikation zu messen. d. das zeitliche Verhalten bzgl. der Erzeugung von generischen Datentypen und das Einstellen von Daten zu messen und zu analysieren. e. das zeitliche Verhalten bzgl. des Erstellens von unbekannten, d. h. nicht in IDL beschriebenen Datentypen zur Laufzeit zu messen und zu analysieren. f. die Vorzüge/Nachteile der dynamischen Komponenten aufzuzeigen, ihre Einsatzgebiete zu definieren und mit anderen Technologien wie COM/DCOM, J2EE und den Web Services bzgl. ihrer Möglichkeiten zu vergleichen. g. Aussagen bzgl. enger und loser Koppelung zu tätigen. CORBA wird als standardisierte und vollständige Verteilungsplattform ausgewählt, um die o. a. Problemstellungen zu untersuchen. Bzgl. seines dynamischen Verhaltens, das zum Zeitpunkt dieser Ausarbeitung noch nicht oder nur unzureichend untersucht wurde, sind CORBA und die Web Services richtungsweisend bzgl. a. Arbeiten mit unbekannten Objekten. Dies kann durchaus Implikationen bzgl. der Entwicklung intelligenter Softwareagenten haben. b. der Integration von Legacy-Applikationen. c. der Möglichkeiten im Zusammenhang mit B2B (Business-to-Business). Diese Problemstellungen beinhalten auch allgemeine Fragen zum Marshalling/Unmarshalling von Daten und welche Aufwände hierfür notwendig sind, ebenso wie allgemeine Aussagen bzgl. der Echtzeitfähigkeit von CORBA-basierten, verteilten Anwendungen. Die Ergebnisse werden anschließend auf andere Technologien wie COM/DCOM, J2EE und den Web Services, soweit es zulässig ist, übertragen. Die Vergleiche CORBA mit DCOM, CORBA mit J2EE und CORBA mit Web Services zeigen im Detail die Eignung dieser Technologien bzgl. loser und enger Koppelung. Desweiteren werden aus den erzielten Resultaten allgemeine Konzepte bzgl. der Architektur und der Optimierung der Kommunikation abgeleitet. Diese Empfehlungen gelten uneingeschränkt für alle untersuchten Technologien im Zusammenhang mit verteilter Verarbeitung.
Resumo:
The spectacular advances computer science applied to geographic information systems (GIS) in recent times has favored the emergence of several technological solutions. These developments have given rise to enormous opportunities for digital management of the territory. Among the technological solutions, the most famous Google Maps offers free online mapping dynamic exhaustive of the Maps. In addition to meet the enormous needs of urban indicators geotagged information, we did work on this project “Integration of an urban observatory on Google Maps.” The problem of geolocation in the urban observatory is particularly relevant in the sense that there is currently no data (descriptive and geographical) reliable on the urban sector; we must stick to extrapolate from data old and obsolete. This helps to curb the effectiveness of urban management to make difficult investment programming and to prevent the acquisition of knowledge to make cities engines of growth. The use of a geolocation tool coupled to the data would allow better monitoring of indicators Our project's objective is to develop an interactive map server (WebMapping) which map layer is formed from the resources of the Google Maps servers and match information from the field to produce maps of urban equipment and infrastructure of a city data to the client's request To achieve this goal, we will participate in a study of a GPS location of strategic sites in our core sector (health facilities), on the other hand, using information from the field, we will build a postgresql database that will link the information from the field to map from Google Maps via KML scripts and PHP appropriate. We will limit ourselves in our work to the city of Douala Cameroon with the sectors of health facilities with the possibility of extension to other areas and other cities. Keywords: Geographic Information System (GIS), Thematic Mapping, Web Mapping, data mining, Google API.
Resumo:
Linking the physical world to the Internet, also known as the Internet of Things, has increased available information and services in everyday life and in the Enterprise world. In Enterprise IT an increasing number of communication is done between IT backend systems and small IoT devices, for example sensor networks or RFID readers. This introduces some challenges in terms of complexity and integration. We are working on the integration of IoT devices into Enterprise IT by leveraging SOA techniques and Semantic Web technologies. We present a SOA based integration platform for connecting WSNs and large enterprise business processes. For ensuring interoperability our platform is based on Linked Services. These are thoroughly described, machine-readable, machine-reasonable service descriptions.
Resumo:
Online reputation management deals with monitoring and influencing the online record of a person, an organization or a product. The Social Web offers increasingly simple ways to publish and disseminate personal or opinionated information, which can rapidly have a disastrous influence on the online reputation of some of the entities. The author focuses on the Social Web and possibilities of its integration with the Semantic Web as resource for a semi-automated tracking of online reputations using imprecise natural language terms. The inherent structure of natural language supports humans not only in communication but also in the perception of the world. Thereby fuzziness is a promising tool for transforming those human perceptions into computer artifacts. Through fuzzy grassroots ontologies, the Social Semantic Web becomes more naturally and thus can streamline online reputation management. For readers interested in the cross-over field of computer science, information systems, and social sciences, this book is an ideal source for becoming acquainted with the evolving field of fuzzy online reputation management in the Social Semantic Web area.
Resumo:
Companion animals closely share their domestic environment with people and have the potential to, act as sources of zoonotic diseases. They also have the potential to be sentinels of infectious and noninfectious, diseases. With the exception of rabies, there has been minimal ongoing surveillance of, companion animals in Canada. We developed customized data extraction software, the University of, Calgary Data Extraction Program (UCDEP), to automatically extract and warehouse the electronic, medical records (EMR) from participating private veterinary practices to make them available for, disease surveillance and knowledge creation for evidence-based practice. It was not possible to build, generic data extraction software; the UCDEP required customization to meet the specific software, capabilities of the veterinary practices. The UCDEP, tailored to the participating veterinary practices', management software, was capable of extracting data from the EMR with greater than 99%, completeness and accuracy. The experiences of the people developing and using the UCDEP and the, quality of the extracted data were evaluated. The electronic medical record data stored in the data, warehouse may be a valuable resource for surveillance and evidence-based medical research.
Resumo:
Large amounts of animal health care data are present in veterinary electronic medical records (EMR) and they present an opportunity for companion animal disease surveillance. Veterinary patient records are largely in free-text without clinical coding or fixed vocabulary. Text-mining, a computer and information technology application, is needed to identify cases of interest and to add structure to the otherwise unstructured data. In this study EMR's were extracted from veterinary management programs of 12 participating veterinary practices and stored in a data warehouse. Using commercially available text-mining software (WordStat™), we developed a categorization dictionary that could be used to automatically classify and extract enteric syndrome cases from the warehoused electronic medical records. The diagnostic accuracy of the text-miner for retrieving cases of enteric syndrome was measured against human reviewers who independently categorized a random sample of 2500 cases as enteric syndrome positive or negative. Compared to the reviewers, the text-miner retrieved cases with enteric signs with a sensitivity of 87.6% (95%CI, 80.4-92.9%) and a specificity of 99.3% (95%CI, 98.9-99.6%). Automatic and accurate detection of enteric syndrome cases provides an opportunity for community surveillance of enteric pathogens in companion animals.
Resumo:
The software Pan2Applic is a tool to convert files or folders of files (ascii/tab-separated data files with or without metaheader), downloaded from PANGAEA via the search engine or the data warehouse to formats as used by applications, e.g. for visualization or further processing. It may also be used to convert files or zip-archives as downloaded from CD-ROM data collections, published in the WDC-MARE Reports series. Pan2Applic is distributed as freeware for the operating systems Microsoft Windows, Apple OS X and Linux.
Resumo:
DynaLearn (http://www.DynaLearn.eu) develops a cognitive artefact that engages learners in an active learning by modelling process to develop conceptual system knowledge. Learners create external representations using diagrams. The diagrams capture conceptual knowledge using the Garp3 Qualitative Reasoning (QR) formalism [2]. The expressions can be simulated, confronting learners with the logical consequences thereof. To further aid learners, DynaLearn employs a sequence of knowledge representations (Learning Spaces, LS), with increasing complexity in terms of the modelling ingredients a learner can use [1]. An online repository contains QR models created by experts/teachers and learners. The server runs semantic services [4] to generate feedback at the request of learners via the workbench. The feedback is communicated to the learner via a set of virtual characters, each having its own competence [3]. A specific feedback thus incorporates three aspects: content, character appearance, and a didactic setting (e.g. Quiz mode). In the interactive event we will demonstrate the latest achievements of the DynaLearn project. First, the 6 learning spaces for learners to work with. Second, the generation of feedback relevant to the individual needs of a learner using Semantic Web technology. Third, the verbalization of the feedback via different animated virtual characters, notably: Basic help, Critic, Recommender, Quizmaster & Teachable agen
Resumo:
Abstract Web 2.0 applications enabled users to classify information resources using their own vocabularies. The bottom-up nature of these user-generated classification systems have turned them into interesting knowledge sources, since they provide a rich terminology generated by potentially large user communities. Previous research has shown that it is possible to elicit some emergent semantics from the aggregation of individual classifications in these systems. However the generation of ontologies from them is still an open research problem. In this thesis we address the problem of how to tap into user-generated classification systems for building domain ontologies. Our objective is to design a method to develop domain ontologies from user-generated classifications systems. To do so, we rely on ontologies in the Web of Data to formalize the semantics of the knowledge collected from the classification system. Current ontology development methodologies have recognized the importance of reusing knowledge from existing resources. Thus, our work is framed within the NeOn methodology scenario for building ontologies by reusing and reengineering non-ontological resources. The main contributions of this work are: An integrated method to develop ontologies from user-generated classification systems. With this method we extract a domain terminology from the classification system and then we formalize the semantics of this terminology by reusing ontologies in the Web of Data. Identification and adaptation of existing techniques for implementing the activities in the method so that they can fulfill the requirements of each activity. A novel study about emerging semantics in user-generated lists. Resumen La web 2.0 permitió a los usuarios clasificar recursos de información usando su propio vocabulario. Estos sistemas de clasificación generados por usuarios son recursos interesantes para la extracción de conocimiento debido principalmente a que proveen una extensa terminología generada por grandes comunidades de usuarios. Se ha demostrado en investigaciones previas que es posible obtener una semántica emergente de estos sistemas. Sin embargo la generación de ontologías a partir de ellos es todavía un problema de investigación abierto. Esta tesis trata el problema de cómo aprovechar los sistemas de clasificación generados por usuarios en la construcción de ontologías de dominio. Así el objetivo de la tesis es diseñar un método para desarrollar ontologías de dominio a partir de sistemas de clasificación generados por usuarios. El método propuesto reutiliza conceptualizaciones existentes en ontologías publicadas en la Web de Datos para formalizar la semántica del conocimiento que se extrae del sistema de clasificación. Por tanto, este trabajo está enmarcado dentro del escenario para desarrollar ontologías mediante la reutilización y reingeniería de recursos no ontológicos que se ha definido en la Metodología NeOn. Las principales contribuciones de este trabajo son: Un método integrado para desarrollar una ontología de dominio a partir de sistemas de clasificación generados por usuarios. En este método se extrae una terminología de dominio del sistema de clasificación y posteriormente se formaliza su semántica reutilizando ontologías en la Web de Datos. La identificación y adaptación de un conjunto de técnicas para implementar las actividades propuestas en el método de tal manera que puedan cumplir automáticamente los requerimientos de cada actividad. Un novedoso estudio acerca de la semántica emergente en las listas generadas por usuarios en la Web.
Resumo:
The application of methodologies for building ontologies can im-prove ontology quality. However, such quality is not guaranteed because of the difficulties involved in ontology modelling. These difficulties are related to the inclusion of anomalies or bad practices within the ontology development. Sev-eral authors have provided lists of typical anomalies detected in ontologies dur-ing the last decade. In this context, our aim in this paper is to describe OOPS! (OntOlogy Pitfall Scanner!), a tool for detecting pitfalls in ontologies.