623 resultados para Savijärvi, Ilkka: Jämsän äijän murrekirja
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The genus Astronium (Anacardiaceae) includes species, such as Astronium fraxinifolium, Astronium graveolens, and Astronium urundeuva, which possess anti-inflammatory, anti-ulcerogenic, healing, and antimicrobial properties. Nanostructured lipid systems are able to potentiate the action of plant extracts, reducing the required dose and side effects and improving antimicrobial activity. This work aims to evaluate a nanostructured lipid system that was developed as a strategy to improve the anti-Candida albicans activity of hydroethanolic extracts of stems and leaves from Astronium sp. The antifungal activity against C. albicans (ATCC 18804) was evaluated in vitro by a microdilution technique. In addition to the in vitro assays, the Astronium sp. that showed the best antifungal activity and selectivity index was submitted to an in vivo assay using a model of vulvovaginal candidiasis infection. In these assays, the extracts were either used alone or were incorporated into the nanostructured lipid system (comprising 10% oil phase, 10% surfactant, and 80% aqueous phase). The results indicated a minimal inhibitory concentration of 125.00 µg/mL before incorporation into the nanostructured system; this activity was even more enhanced when this extract presented a minimal inhibitory concentration of 15.62 µg/mL after its incorporation. In vivo assay dates showed that the nanostructure-incorporated extract of A. urundeuva leaves was more effective than both the unincorporated extract and the antifungal positive control (amphotericin B). These results suggest that this nanostructured lipid system can be used in a strategy to improve the in vitro and in vivo anti-C. albicans activity of hydroethanolic extracts of Astronium sp.
Resumo:
Alzheimer's disease is a neurological disorder that results in cognitive and behavioral impairment. Conventional treatment strategies, such as acetylcholinesterase inhibitor drugs, often fail due to their poor solubility, lower bioavailability, and ineffective ability to cross the blood-brain barrier. Nanotechnological treatment methods, which involve the design, characterization, production, and application of nanoscale drug delivery systems, have been employed to optimize therapeutics. These nanotechnologies include polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and liquid crystals. Each of these are promising tools for the delivery of therapeutic devices to the brain via various routes of administration, particularly the intranasal route. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease.
Resumo:
Women often develop vaginal infections that are caused primarily by organisms of the genus Candida. The current treatments of vaginal candidiasis usually involve azole-based antifungals, though fungal resistance to these compounds has become prevalent. Therefore, much attention has been given to molecules with antifungal properties from natural sources, such as curcumin (CUR). However, CUR has poor solubility in aqueous solvents and poor oral bioavailability. This study attempted to overcome this problem by developing, characterizing, and evaluating the in vitro antifungal action of a CUR-loaded liquid crystal precursor mucoadhesive system (LCPM) for vaginal administration. A low-viscosity LCPM (F) consisting of 40% wt/wt polyoxpropylene-(5)-polyoxyethylene-(20)-cetyl alcohol, 50% wt/wt oleic acid, and 10% wt/wt chitosan dispersion at 0.5% with the addition of 16% poloxamer 407 was developed to take advantage of the lyotropic phase behavior of this formulation. Notably, F could transform into liquid crystal systems when diluted with artificial vaginal mucus at ratios of 1:3 and 1:1 (wt/wt), resulting in the formation of F30 and F100, respectively. Polarized light microscopy and rheological studies revealed that F behaved like an isotropic formulation, whereas F30 and F100 behaved like an anisotropic liquid crystalline system (LCS). Moreover, F30 and F100 presented higher mucoadhesion to porcine vaginal mucosa than F. The analysis of the in vitro activity against Candida albicans revealed that CUR-loaded F was more potent against standard and clinical strains compared with a CUR solution. Therefore, the vaginal administration of CUR-loaded LCPMs represents a promising platform for the treatment of vaginal candidiasis.
Resumo:
Antitumor activities have been described in selol, a hydrophobic mixture of molecules containing selenium in their structure, and also in maghemite magnetic nanoparticles (MNPs). Both selol and MNPs were co-encapsulated within poly(lactic-co-glycolic acid) (PLGA) nanocapsules for therapeutic purposes. The PLGA-nanocapsules loaded with MNPs and selol were labeled MSE-NC and characterized by transmission and scanning electron microscopy, electrophoretic mobility, photon correlation spectroscopy, presenting a monodisperse profile, and positive charge. The antitumor effect of MSE-NC was evaluated using normal (MCF-10A) and neoplastic (4T1 and MCF-7) breast cell lines. Nanocapsules containing only MNPs or selol were used as control. MTT assay showed that the cytotoxicity induced by MSE-NC was dose and time dependent. Normal cells were less affected than tumor cells. Cell death occurred mainly by apoptosis. Further exposure of MSE-NC treated neoplastic breast cells to an alternating magnetic field increased the antitumor effect of MSE-NC. It was concluded that selol-loaded magnetic PLGA-nanocapsules (MSE-NC) represent an effective magnetic material platform to promote magnetohyperthermia and thus a potential system for antitumor therapy.
Resumo:
Background: Magnetic hyperthermia is currently a clinical therapy approved in the European Union for treatment of tumor cells, and uses magnetic nanoparticles (MNPs) under time-varying magnetic fields (TVMFs). The same basic principle seems promising against trypanosomatids causing Chagas disease and sleeping sickness, given that the therapeutic drugs available have severe side effects and that there are drug-resistant strains. However, no applications of this strategy against protozoan-induced diseases have been reported so far. In the present study, Crithidia fasciculata, a widely used model for therapeutic strategies against pathogenic trypanosomatids, was targeted with Fe3O4 MNPs in order to provoke cell death remotely using TVMFs. Methods: Iron oxide MNPs with average diameters of approximately 30 nm were synthesized by precipitation of FeSO4 in basic medium. The MNPs were added to C. fasciculata choanomastigotes in the exponential phase and incubated overnight, removing excess MNPs using a DEAE-cellulose resin column. The amount of MNPs uploaded per cell was determined by magnetic measurement. The cells bearing MNPs were submitted to TVMFs using a homemade AC field applicator (f = 249 kHz, H = 13 kA/m), and the temperature variation during the experiments was measured. Scanning electron microscopy was used to assess morphological changes after the TVMF experiments. Cell viability was analyzed using an MTT colorimetric assay and flow cytometry. Results: MNPs were incorporated into the cells, with no noticeable cytotoxicity. When a TVMF was applied to cells bearing MNPs, massive cell death was induced via a nonapoptotic mechanism. No effects were observed by applying TVMF to control cells not loaded with MNPs. No macroscopic rise in temperature was observed in the extracellular medium during the experiments. Conclusion: As a proof of principle, these data indicate that intracellular hyperthermia is a suitable technology to induce death of protozoan parasites bearing MNPs. These findings expand the possibilities for new therapeutic strategies combating parasitic infection.
Resumo:
Introduction Acute hemodynamic instability increases morbidity and mortality. We investigated whether early non-invasive cardiac output monitoring enhances hemodynamic stabilization and improves outcome. Methods A multicenter, randomized controlled trial was conducted in three European university hospital intensive care units in 2006 and 2007. A total of 388 hemodynamically unstable patients identified during their first six hours in the intensive care unit (ICU) were randomized to receive either non-invasive cardiac output monitoring for 24 hrs (minimally invasive cardiac output/MICO group; n = 201) or usual care (control group; n = 187). The main outcome measure was the proportion of patients achieving hemodynamic stability within six hours of starting the study. Results The number of hemodynamic instability criteria at baseline (MICO group mean 2.0 (SD 1.0), control group 1.8 (1.0); P = .06) and severity of illness (SAPS II score; MICO group 48 (18), control group 48 (15); P = .86)) were similar. At 6 hrs, 45 patients (22%) in the MICO group and 52 patients (28%) in the control group were hemodynamically stable (mean difference 5%; 95% confidence interval of the difference -3 to 14%; P = .24). Hemodynamic support with fluids and vasoactive drugs, and pulmonary artery catheter use (MICO group: 19%, control group: 26%; P = .11) were similar in the two groups. The median length of ICU stay was 2.0 (interquartile range 1.2 to 4.6) days in the MICO group and 2.5 (1.1 to 5.0) days in the control group (P = .38). The hospital mortality was 26% in the MICO group and 21% in the control group (P = .34). Conclusions Minimally-invasive cardiac output monitoring added to usual care does not facilitate early hemodynamic stabilization in the ICU, nor does it alter the hemodynamic support or outcome. Our results emphasize the need to evaluate technologies used to measure stroke volume and cardiac output--especially their impact on the process of care--before any large-scale outcome studies are attempted.
Resumo:
Experimental tissue fusion benefits from the selective heating of superparamagnetic iron oxide nanoparticles (SPIONs) under high frequency irradiation. However, the metabolic pathways of SPIONs for tissue fusion remain unknown. Hence, the goal of this in vivo study was to analyze the distribution of SPIONs in different organs by means of magnetic resonance imaging (MRI) and histological analysis after a SPION-containing patch implantation.
Resumo:
Studies report high rates of suicide attempts for female immigrants. This study assesses variations in the distribution of suicide attempts across gender in immigrant and non-immigrant groups in Europe.
Resumo:
This study compares the frequencies of attempted suicide among immigrants and their hosts, between different immigrant groups, and between immigrants and their countries of origin.
Resumo:
Avoidance of excessively deep sedation levels is problematic in intensive care patients. Electrophysiologic monitoring may offer an approach to solving this problem. Since electroencephalogram (EEG) responses to different sedation regimens vary, we assessed electrophysiologic responses to two sedative drug regimens in 10 healthy volunteers. Dexmedetomidine/remifentanil (dex/remi group) and midazolam/remifentanil (mida/remi group) were infused 7 days apart. Each combination of medications was given at stepwise intervals to reach Ramsay scores (RS) 2, 3, and 4. Resting EEG, bispectral index (BIS), and the N100 amplitudes of long-latency auditory-evoked potentials (ERP) were recorded at each level of sedation. During dex/remi, resting EEG was characterized by a recurrent high-power low-frequency pattern which became more pronounced at deeper levels of sedation. BIS Index decreased uniformly in only the dex/remi group (from 94 +/- 3 at baseline to 58 +/- 14 at RS 4) compared to the mida/remi group (from 94 +/- 2 to 76 +/- 10; P = 0.029 between groups). The ERP amplitudes decreased from 5.3 +/- 1.3 at baseline to 0.4 +/- 1.1 at RS 4 (P = 0.003) in only the mida/remi group. We conclude that ERPs in volunteers sedated with dex/remi, in contrast to mida/remi, indicate a cortical response to acoustic stimuli, even when sedation reaches deeper levels. Consequently, ERP can monitor sedation with midazolam but not with dexmedetomidine. The reverse is true for BIS.
Resumo:
Mucosal pH (pHi) is influenced by local perfusion and metabolism (mucosal-arterial Pco2 gradient, DeltaPco2), systemic metabolic acidosis (arterial bicarbonate), and respiration (arterial Pco2). We determined these components of pHi and their relation to outcome during the first 24 h of intensive care. We studied 103 patients with acute respiratory or circulatory failure (age, 63 +/- 2 [mean +/- SEM]; Acute Physiology and Chronic Health Evaluation II score, 20 +/- 1; Sequential Organ Failure Assessment score, 8 +/- 0). pHi, and the effects of bicarbonate and arterial and mucosal Pco2 on pHi, were assessed at admission, 6, and 24 h. pHi was reduced (at admission, 7.27 +/- 0.01) due to low arterial bicarbonate and increased DeltaPco2. Low pHi (<7.32) at admission (n = 58; mortality, 29% vs. 13% in those with pHi >/=7.32 at admission; P = 0.061) was associated with an increased DeltaPco2 in 59% of patients (mortality, 47% vs. 4% for patients with low pHi and normal DeltaPco2; P = 0.0003). An increased versus normal DeltaPco2, regardless of pHi, was associated with increased mortality at admission (51% vs. 5%; P < 0.0001; n = 39) and at 6 h (34% vs. 13%; P = 0.016; n = 45). A delayed normalization or persistently low pHi (n = 47) or high DeltaPco2 (n = 25) was associated with high mortality (low pHi [34%] vs. high DeltaPco2 [60%]; P = 0.046). In nonsurvivors, hypocapnia increased pHi at baseline, 6, and 24 h (all P = 0.001). In patients with initially normal pHi or DeltaPco2, outcome was not related to subsequent changes in pHi or DeltaPco2. Increased DeltaPco2 during early resuscitation suggests poor tissue perfusion and is associated with high mortality. Arterial bicarbonate contributes more to pHi than the DeltaPco2 but is not associated with mortality. Hyperventilation partly masks mucosal acidosis. Inadequate tissue perfusion may persist despite stable hemodynamics and contributes to poor outcome.
Resumo:
INTRODUCTION: Sedative and analgesic drugs are frequently used in critically ill patients. Their overuse may prolong mechanical ventilation and length of stay in the intensive care unit. Guidelines recommend use of sedation protocols that include sedation scores and trials of sedation cessation to minimize drug use. We evaluated processed electroencephalography (response and state entropy and bispectral index) as an adjunct to monitoring effects of commonly used sedative and analgesic drugs and intratracheal suctioning. METHODS: Electrodes for monitoring bispectral index and entropy were placed on the foreheads of 44 critically ill patients requiring mechanical ventilation and who previously had no brain dysfunction. Sedation was targeted individually using the Ramsay Sedation Scale, recorded every 2 hours or more frequently. Use of and indications for sedative and analgesic drugs and intratracheal suctioning were recorded manually and using a camera. At the end of the study, processed electroencephalographical and haemodynamic variables collected before and after each drug application and tracheal suctioning were analyzed. Ramsay score was used for comparison with processed electroencephalography when assessed within 15 minutes of an intervention. RESULTS: The indications for boli of sedative drugs exhibited statistically significant, albeit clinically irrelevant, differences in terms of their association with processed electroencephalographical parameters. Electroencephalographical variables decreased significantly after bolus, but a specific pattern in electroencephalographical variables before drug administration was not identified. The same was true for opiate administration. At both 30 minutes and 2 minutes before intratracheal suctioning, there was no difference in electroencephalographical or clinical signs in patients who had or had not received drugs 10 minutes before suctioning. Among patients who received drugs, electroencephalographical parameters returned to baseline more rapidly. In those cases in which Ramsay score was assessed before the event, processed electroencephalography exhibited high variation. CONCLUSIONS: Unpleasant or painful stimuli and sedative and analgesic drugs are associated with significant changes in processed electroencephalographical parameters. However, clinical indications for drug administration were not reflected by these electroencephalographical parameters, and barely by sedation level before drug administration or tracheal suction. This precludes incorporation of entropy and bispectral index as target variables for sedation and analgesia protocols in critically ill patients.
Resumo:
PURPOSE: To compare dexmedetomidine (DEX) with standard care (SC, either propofol or midazolam) for long-term sedation in terms of maintaining target sedation and length of intensive care unit (ICU) stay. METHODS: A pilot, phase III, double-blind multicenter study in randomized medical and surgical patients (n = 85) within the first 72 h of ICU stay with an expected ICU stay of >or=48 h and sedation need for >or=24 h after randomization. Patients were assigned to either DEX (