857 resultados para Refinement
Resumo:
The structural and vibrational properties of nanocrystalline Ga1-xMnxN films deposited by reactive magnetron sputtering were analyzed in a wide composition range (0 < x < 0.18). The films were structurally characterized using x-ray diffraction with Rietveld refinement. The corresponding vibrational properties were investigated using micro-Raman and Fourier transform infrared spectroscopies. The films present a high crystallized fraction, crystallites having wurtzite structure, and high orientation texture with the c axis oriented perpendicular to the substrate surface. Rietveld analysis indicates that Mn atoms are incorporated substitutionally into Ga positions and show that the ionic character of cation-N bonds along the c axis is favored by the Mn incorporation. No evidence for Mn segregation or Mn rich phases was found in the composition range analyzed. Micro-Raman scattering spectra and infrared absorption experiments showed progressive changes with the increase of x and monotonic shifts of the GaN TO and LO peaks to lower frequencies. The structural and vibrational analyses are compared and the influence of Mn on the static and dynamic properties of the lattice is analyzed. (C) 2007 American Institute of Physics.
Resumo:
Pb0.91Ca0.1TiO3 powders (PCT) were prepared by mechanochemical synthesis from high-energy ball milling process. The influence of milling time on the phase formation, crystal structure, specific surface area, density and powder morphology was observed. We adopted the Rietveld refinement technique to investigate the crystal structure of the PCT powders. Scanning electron microscopy (SEM) analysis revealed that PCT powders milled for 5 h showed a wide distribution of particle agglomerates while milled for 35 h showed a decrease in agglomerates size. Further prolongation of milling time resulted in the agglomerates growth. (C) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
A structural study of the thermal evolution of Ni0.69Cr0.31(OH)(2)(CO3)(0.155)(.)nH(2)O into NiO and tetragonal NiCr2O4 is reported. The characteristic structural parameters of the two coexisting crystalline phases, as well as their relative abundance, were determined by Rietveld refinement of powder x-ray diffraction (PXRD) patterns. The results of the simulations allowed us to elucidate the mechanism of the demixing process of the oxides. It is demonstrated that nucleation of a metastable nickel chromite within the common oxygen framework of the parent Cr-III-doped bunsenite is the initial step of the cationic redistribution. The role that trivalent cations play in the segregation of crystalline spinels is also discussed.
Resumo:
The hspA gene (XAC1151) from Xanthomonas axonopodis pv. citri encodes a protein of 158 amino acids that belongs to the small heat-shock protein ( sHSP) family of proteins. These proteins function as molecular chaperones by preventing protein aggregation. The protein was crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium phosphate. X-ray diffraction data were collected to 1.65 angstrom resolution using a synchrotron-radiation source. The crystal belongs to the rhombohedral space group R3, with unit-cell parameters a = b = 128.7, c = 55.3 angstrom. The crystal structure was solved by molecular-replacement methods. Structure refinement is in progress.
Resumo:
Sm-doped PbTiO3 powder was synthesized by the polymeric precursor method, and was heat treated at different temperatures. The x-ray diffraction, photoluminescence, and UV-visible were used as a probe for the structural order degree short-, intermediate-, and long-range orders. Sm-3+ ions were used as markers of these order-disorder transformations in the PbTiO3 system. From the Rietveld refinement of the Sm-doped PbTiO3 x-ray diffraction data, structural models were obtained and analyzed by periodic ab initio quantum mechanical calculations using the CRYSTAL 98 package within the framework of density functional theory at the B3LYP level. This program can yield important information regarding the structural and electronic properties of crystalline and disordered structures. The experimental and theoretical results indicate the presence of the localized states in the band gap, due to the symmetry break, which is responsible for visible photoluminescence at room temperature in the disordered structure. (c) 2006 American Institute of Physics.
Resumo:
The widespread falsification and/or adulteration of commercially available pharmaceutical preparations call for reliable methods of drug identification, preferably through selective and rapid sorting color tests that could be undertaken with minimum equipment remote from laboratory facilities. The present work deals with a convenient adaptation and refinement of a spot test devised by Feigl (1966) for urotropine, based on the hydrolytic cleavage of that substance in the presence of sulfuric acid, splitting out formaldehyde which is identified by its color reaction with chromotropic acid. A simple emergency kit was developed for the quick, efficient, inexpensive and easy performance of urotropine tests by semiskilled personnel even in the drugstore laboratory (or office) as well as in a mobile screening operation. It is shown that when the reagents are added according to the recommended sequence a self-heating system is generated, increasing substantially the reactions' rates and the test sensitivity as well. The identification limit found was 25 mug of urotropine, for both solid and liquid samples. The possible interference of 84 substances/materials was investigated. Interference was noted only for methylene blue, acriflavine, Ponceau Red, Bordeaux Red (these dyes are often included in urotropine dosage forms), pyramidone, dipyrone, quinine and tetracycline. A simple procedure for removing most of the interferences is described. Data for 8 commercial dosage forms and results obtained from their analysis are presented.
Resumo:
The molecular structure of human uropepsin, an aspartic proteinase from the urine produced in the form of pepsinogen A in the gastric mucosa, has been determined by molecular replacement using human pepsin as the search model. Crystals belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 50.99, b = 75.56, c = 89.90 Angstrom. Crystallographic refinement led to an R factor of 0.161 at 2.45 Angstrom resolution. The positions of 2437 non-H protein atoms in 326 residues have been determined and the model contains 143 water molecules. The structure is bilobal, consisting of two predominantly beta -sheet lobes which, as observed in other aspartic proteinases, are related by a pseudo-twofold axis. A model of the uropepsin-pepstatin complex has been constructed based on the high-resolution crystal structure of pepsin complexed with pepstatin.
Resumo:
In this work we report the synthesis procedure, crystallographic, structural and magnetic properties of the Li2ZnTi3O8 spinel obtained using a modified polymeric precursor method. This synthesis method generates very reactive and property-controlled nanoparticles. The samples were characterized using X-ray powder diffraction (XRD) associated to the Rietveld refinement method, thermogravimetric analysis (TG), specific surface area, scanning electron microscopy (SEM) and magnetic susceptibility measurements.The phase formation temperature of the lithium zinc titanate spinel was observed to decrease due to the homogeneity and highly controlled nanometric particle size. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The effects of the degradation process on the structural, microstructural and electrical properties of ZnO-based varistors were analyzed. Rietveld refinement showed that the BiO2-x phase is affected by the degradation process. Besides the changes in the spinel phase, the degradation process also affects the lattice microstrain in the ZnO phase. Scanning electron microscopy analysis showed electrode-melting failure, while wavelength dispersive X-ray spectroscopy qualitative analysis showed deficiency of oxygen species at the grain boundaries in the degraded samples. Atomic force microscopy using electrostatic mode force illustrated a decrease in the charge density at the grain boundaries of the degraded sample. Transmission electron microscopy showed submicrometric spinel grains embedded in a ZnO matrix, but their average grain size is smaller in the degraded sample than in the standard one. Long pulses appeared to be more harmful for the varistors' properties than short ones, causing higher leakage current values. The electrical characteristics of the degraded sample are partially restored after heat treatment in an oxygen-rich atmosphere. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Methods of assessment of compost maturity are needed so the application of composted materials to lands will provide optimal benefits. The aim of the present paper is to assess the maturity reached by composts from domestic solid wastes (DSW) prepared under periodic and permanent aeration systems and sampled at different composting time, by means of excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform infrared spectroscopy (FT-IR). EEM spectra indicated the presence of two different fluorophores centered, respectively, at Ex/Em wavelength pairs of 330/425 and 280/330 nm. The fluorescence intensities of these peaks were also analyzed, showing trends related to the maturity of composts. The contour density of EEM maps appeared to be strongly reduced with composting days. After 30 and 45 days of composting, FT-IR spectra exhibited a decrease of intensity of peaks assigned to polysaccharides and in the aliphatic region. EEM and FT-IR techniques seem to produce spectra that correlate with the degree of maturity of the compost. Further refinement of these techniques should provide a relatively rapid method of assessing the suitability of the compost to land application.
Resumo:
Single-phase perovskite 0.9Pb(Mg1/3Nb2/3)O-3-0.1PbTiO(3) (PMN-PT) powders were prepared by using a Ti-modified columbite precursor (MNT) obtained by the polymeric precursor method. The innovation consists in the preparation of Ti-modified columbite in order to react directly with a stoichiometric amount of PbO to obtain pyrochlore-free PMN-PT powders. It has been shown that titanium oxide forms a solid solution with columbite (MN) and does not affect the obtaining of a single-phase columbite precursor. Thus, a high amount of perovskite phase can be obtained by reaction with PbO at 800 degreesC for 2 h. Effects of K and Li additives on the structure of MNT and PMN-PT were studied. X-ray diffraction studies were carried out to verify the phase formation at each processing step and these data were used for structural refinement by the Rietveld method. Both K and Li additives increase the crystallinity of MNT powders, being this effect more intense for the Li-doped samples. For PMN-PT samples the additives cause an insignificant decrease in the amount of perovskite phase. The morphology of the PMN-PT powder depends on the type of the additive. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
The polymeric precursor method was used to synthesize lead zirconate titanate powder (PZT). The crystalline powder was then amorphized by a high-energy ball milling process during 120h. A strong photoluminescence emission was observed at room temperature for the amorphized PZT powder. The powders were characterized by XRD and the percentage of amorphous phase was calculated through Rietveld refinement. The microstructure for both phases was investigated by TEM. The optical gap was calculated through the Wood and Tauc method using the UV-Vis. data. Quantum mechanical calculations were carried out to give an interpretation of the photoluminescence in terms of electronic structure. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A quantitative phase analysis was made of LiXCoO2 powders obtained by two distinct chemical methodologies at different temperatures (from 400 to 700degreesC). A phase analysis was made using Rietveld refinements based on X-ray diffraction data, considering the LiXCoO2 powders as a multiphase system that simultaneously contained two main phases with distinct, layered and spinel-type structures. The sults showed the coexistence of both structures in LiXCoO2 obtained at low temperature (400 and 500degreesC), although only the layered structure was detected at higher temperatures (600 and 700degreesC, regardless of the chemical powder process employed. The electrochemical performance, evaluated mainly by the cycling reversibility of LiXCoO2 in the form of cathode insertion electrodes, revealed that there is a close correlation between structural features and the electrochemical response, with one of the redox processes (3.3 v/3.9 v) associated only with the presence of the spinel-type structure. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Disordered and crystalline Mn-doped BaTiO3 (BTO:Mn) powders were synthesized by the polymeric precursor method. After heat treatment, the nature of visible photoluminescence (PL) at room temperature in amorphous BTO:Mn was discussed, considering results of experimental and theoretical studies. X-ray diffraction (XRD), PL, and UV-vis were used to characterize this material. Rietveld refinement of the BTO:Mn from XRD data was used to built two models, which represent the crystalline BTO:Mn (BTO:Mn,) and disordered BTO:Mn (BTO:Mn-d) structures. Theses models were analyzed by the periodic ab initio quantum mechanical calculations using the CRYSTAL98 package within the framework of density functional theory at the B3LYP level. The experimental and theoretical results indicated that PL is related with the degree of disorder in the BTO:Mn powders and also suggests the presence of localized states in the disordered structure. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The seed lectin from Lotus tetragonolobus (LTA) has been crystallized. The best crystals grew over several days and were obtained using the vapour-diffusion method at a constant temperature of 293 K. A complete structural data set was collected at 2.00 angstrom resolution using a synchrotron-radiation source. LTA crystals were found to be monoclinic, belonging to space group P2(1), with unit-cell parameters a = 68.89, b = 65.83, c = 102.53 angstrom, alpha = gamma = 90, beta = 92 degrees. Molecular replacement yielded a solution with a correlation coefficient and R factor of 34.4 and 51.6%, respectively. Preliminary analysis of the molecular-replacement solution indicates a new quaternary association in the LTA structure. Crystallographic refinement is under way.