824 resultados para RIGHT TO DRINKING WATER
Resumo:
We study how effectively information induces Bangladeshi households to avoid a health risk. The response to information is large and rapid; knowing that the household's well water has an unsafe concentration of arsenic raises the probability that the household changes to another well within one year by 0.37. Households who change wells increase the time spent obtaining water fifteen-fold. We identify a causal effect of information, since incidence of arsenic is uncorrelated with household characteristics. Our door-to-door information campaign provides well-specific arsenic levels without which behavior does not change. Media communicate general information about arsenic less expensively and no less effectively. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The Channel Catchments Cluster (3C) aims to capitalise on outputs from some of the recent projects funded through the INTERREG IVa France (Channel) England programme. The river catchment basins draining into the Channel region drain an area of 137,000km2 and support a human population of over 19M. Throughout history, these catchments, rivers and estuaries have been centres of habitation, developed through commerce and industry, providing transport links to hinterland areas. These catchments also provide drinking water and food through provision of agriculture, fisheries and aquaculture. In addition, many parts of the region are also economically important now for the tourism and leisure industries. Consequently, there is a need to manage the balance of these many and varied human activities within the catchments, rivers, estuaries and marine areas to ensure that they are maintained or restored to good environmental condition . This document highlights some of the recent work carried out by projects within the INTERREG IVa programme that provide tools and techniques to assist in the achievement of these goals.
Resumo:
In all but the most sterile environments bacteria will reside in fluid being transported through conduits and some of these will attach and grow as biofilms on the conduit walls. The concentration and diversity of bacteria in the fluid at the point of delivery will be a mix of those when it entered the conduit and those that have become entrained into the flow due to seeding from biofilms. Examples include fluids through conduits such as drinking water pipe networks, endotracheal tubes, catheters and ventilation systems. Here we present two probabilistic models to describe changes in the composition of bulk fluid microbial communities as they are transported through a conduit whilst exposed to biofilm communities. The first (discrete) model simulates absolute numbers of individual cells, whereas the other (continuous) model simulates the relative abundance of taxa in the bulk fluid. The discrete model is founded on a birth-death process whereby the community changes one individual at a time and the numbers of cells in the system can vary. The continuous model is a stochastic differential equation derived from the discrete model and can also accommodate changes in the carrying capacity of the bulk fluid. These models provide a novel Lagrangian framework to investigate and predict the dynamics of migrating microbial communities. In this paper we compare the two models, discuss their merits, possible applications and present simulation results in the context of drinking water distribution systems. Our results provide novel insight into the effects of stochastic dynamics on the composition of non-stationary microbial communities that are exposed to biofilms and provides a new avenue for modelling microbial dynamics in systems where fluids are being transported.
Resumo:
To assess the contribution of accumulated winter precipitation and glacial meltwater to the recharge of deep ground water flow systems in fracture crystalline rocks, measurements of environmental isotope ratios, hydrochemical composition, and in situ parameters of ground water were performed in a deep tunnel. The measurements demonstrate the significance of these ground water recharge components for deep ground water flow systems in fractured granites of a high alpine catchment in the Central Alps, Switzerland. Hydrochemical and in situ parameters, as well as d18O in ground water samples collected in the tunnel, show only small temporal variations. The precipitation record of d18O shows seasonal variations of ~14‰ and a decrease of 0.23‰ ± 0.03‰ per 100 m elevation gain. d2H and d18O in precipitation are well correlated and plot close to the meteoric water line, as well as d2H and d18O in ground water samples, reflecting the meteoric origin of the latter. The depletion of 18O in ground water compared to 18O content in precipitation during the ground water recharge period indicates significant contributions from accumulated depleted winter precipitation to ground water recharge. The hydrochemical composition of the encountered ground water, Na-Ca-HCO3-SO4(-F), reflects an evolution of the ground water along the flowpath through the granite body. Observed tritium concentrations in ground water range from 2.6 to 16.6 TU, with the lowest values associated with a local negative temperature anomaly and anomalous depleted 18O in ground water. This demonstrates the effect of local ground water recharge from meltwater of submodern glacial ice. Such localized recharge from glaciated areas occurs along preferential flowpaths within the granite body that are mainly controlled by observed hydraulic active shear fractures and cataclastic faults.
Resumo:
The eastern Canadian Arctic is home to Canada’s largest Indigenous population, which depends on local freshwater sources for drinking water. However, small watersheds have rarely been analyzed for long-term hydrologic response to changing climate. This study aims to address this issue by examining the Apex River, a small watershed with a long hydroclimatic record, near Iqaluit, Nunavut. Particular emphasis was placed on the long-term changes in climate and river discharge, and the seasonal variability of water sources between two snapshots in time, 1983 and 2013. Long-term hydrological data were obtained from gauge station 10UH002, operated by Environment and Climate Change Canada, and long-term meteorological data were acquired from Environment Canada–operated stations near Iqaluit Airport. Breakpoint analysis suggested that long-term mean annual surface air temperatures have increased since 1994. In contrast, no long-term total precipitation or annual discharge changes were observed. However, river flow initiation and cessation analyses of the Apex River flow season indicates that flow extended into the autumn since the 2000s. The 2013 flow season lasted 44 days longer than the 1983 flow season. Systematic river sampling was undertaken throughout the 2013 thaw season to determine contributing proportions of event (snowmelt or rainfall) and pre-event (baseflow) water to river runoff. Results from the stable isotope hydrograph separation for 2013 were compared to findings for 1983. Snow was the main source of water to the river during the snowmelt period in 1983 and 2013, however baseflow was still an important contributor. Although there was high similarity of water sources early in the season in 1983 and 2013, the two years differed during the autumn. In 2013 there was a high rainfall runoff response that was not present in 1983, suggesting high release of late-season sub-surface water storage and an increased sensitivity to late-season rainfall events in 2013. This research provides insights into the hydrologic response of the Apex River to long-term climatic change, and highlights the need for high-quality precipitation and discharge data for effective long-term hydrological assessment.
Resumo:
El litoral de Alicante ha sufrido grandes transformaciones territoriales desde las décadas de 1960 y 1970 a raíz de la actividad turística. Uno de los servicios que necesita esta actividad, entre otros, es el abastecimiento de agua potable. En este sentido, por su papel estratégico, el suministro de agua en alta es decisivo para abastecer a los municipios turístico-residenciales. El objetivo de este estudio es conocer y analizar los diferentes sistemas de abastecimiento de agua en alta en la costa de Alicante, sus características, infraestructuras, recursos hídricos disponibles y medidas de gestión llevados a cabo. Algunas de las conclusiones extraídas son el papel estratégico que ejercen en el territorio, especialmente con el agua, un recurso escaso y de vital importancia para la orla costera alicantina, sobre todo en los meses estivales.
Resumo:
About 100 million rural people in Asia are exposed to arsenic (As)-polluted drinking water and agricultural products. Total and inorganic arsenic (t-As and i-As) intake mainly depend on the quality of drinking and cooking waters, and amounts of seafood and rice consumed. The main problems occur in countries with poor water quality where the population depends on rice for their diet, and their t-As and i-As intake is high as a result of growing and cooking rice in contaminated water. Workable solutions to remove As from water and breeding rice cultivars with low As accumulation are being sought. In the meantime, simple recommendations for processing and cooking foods will help to reduce As intake. For instance, cooking using high volumes of As-free water may be a cheap way of reducing As exposure in rural populations. It is necessary to consider the effects of cooking and processing on t-As and i-As to obtain a realistic view of the risks associated with intake of As in Asendemic areas.
Resumo:
Bromate in drinking water, at a level of microgrammes/litre, is a problem in ozonated waters but can be adsorbed, to a certain extent, by granular activated carbon. The adsorption capacity of granular activated carbon for bromate is significantly lowered when there are high concentrations of other anions, most notably chloride and sulphate, present in the water.
Resumo:
Diffuse contaminants can make their way into rivers via a number of different pathways, including overland flow, interflow, and shallow and deep groundwater. Identification of the key pathway(s) delivering contaminants to a receptor is important for implementing effective water management strategies. The ‘Pathways Project’, funded by the Irish Environmental Protection Agency, is developing a catchment management tool that will enable practitioners to identify the critical source areas for diffuse contaminants, and the key pathways of interest in assessing contaminant problems on a catchment and sub-catchment scale.
One of the aims of the project is to quantify the flow and contaminant loadings being delivered to the stream via each of the main pathways. Chemical separation of stream event hydrographs is being used to supplement more traditional physical hydrograph separation methods. Distinct, stable chemical signatures are derived for each of the pathway end members, and the proportion of flow from each during a rainfall event can be determined using a simple mass balance approach.
Event sampling was carried out in a test catchment underlain by poorly permeable soils and bedrock, which is predominantly used for grazing with a number of one-off rural residential houses. Results show that artificial field drainage, which includes subterranean land drains and collector drains around the perimeters of the 1 to 10 ha fields, plays an important role in the delivery of flow and nutrients to the streams in these types of hydrogeological settings.
Nitrate infiltrates with recharge and is delivered to the stream primarily via the artificial drains and the shallow groundwater pathway. Longitudinal stream profiles show that the nitrate load input is relatively uniform over the 8 km length of the stream at high flows, suggesting widespread diffuse contaminant input. In contrast, phosphorus is adsorbed in the clay-rich soil and is transported mainly via the overland flow pathway and the artificial drains. Longitudinal stream profiles for phosphorus suggest a pattern of more discrete points of phosphorus inputs, which may be related to point sources of contamination.
These techniques have application elsewhere within a toolkit of methods for determining the key pathways delivering contaminants to surface water receptors.
Resumo:
Groundwater drawn from fluvioglacial sand and gravel aquifers form the principal source of drinking water in many part of central Western Europe. High population densities and widespread organic agriculture in these same areas constitute hazards that may impact the microbiological quality of many potable supplies. Tracer testing comparing two similarly sized bacteria (E.coli and P. putida) and the smaller bacteriophage (H40/1) with the response of non-reactive solute tracer (uranine) at the decametre scale revealed that all tracers broke through up to 100 times more quickly than anticipated using conventional rules of thumb. All microbiological tracer responses were less disperse than the solute, although bacterial peak relative concentrations consistently exceeded those of the solute tracer at one sampling location reflecting exclusion processes influencing micro biological tracer migration. Relative recoveries of H40/1 and E.coli proved consistent at both monitoring wells, while responses of H40/1 and P.putida differed. Examination of exposures of the upper reaches of the aquifer in nearby sand and gravel quarries revealed the aquifer to consist of laterally extensive layers of open framework (OW) gravel enveloped in finer grained gravelly sand. Granulometric analysis of these deposits suggested that the OW gravel was up to two orders of magnitude more permeable than the surrounding deposits giving rise to the preferential flow paths. By contrast fine grained lenses of silty sand within the OW gravels are suspected to play an important role in the exclusion processes that permit solutes to access them but exclude larger micro organisms.
Resumo:
We report the largest market basket survey of arsenic (As) in U.S. rice to date. Our findings show differences in transitional-metal levels between polished and unpolished rice and geographical variation in As and selenium (Se) between rice processed in California and the South Central U.S. The mean and median As grain levels for the South Central U.S. were 0.30 and 0.27 µg As g-1, respectively, for 107 samples. Levels for California were 41% lower than the South Central U.S., with a mean of 0.17 µg As g-1 and a median of 0.16 µg As g-1 for 27 samples. The mean and median Se grain levels for the South Central U.S. were 0.19 µg Se g-1. Californian rice levels were lower, averaging only 0.08 and 0.06 µg Se g-1 for mean and median values, respectively. The difference between the two regions was found to be significant for As and Se (General Linear Model (GLM):? As p < 0.001; Se p < 0.001). No statistically significant differences were observed in As or Se levels between polished and unpolished rice (GLM:? As p = 0.213; Se p = 0.113). No significant differences in grain levels of manganese (Mn), cobalt (Co), copper (Cu), or zinc (Zn) were observed between California and the South Central U.S. Modeling arsenic intake for the U.S. population based on this survey shows that for certain groups (namely Hispanics, Asians, sufferers of Celiac disease, and infants) dietary exposure to inorganic As from elevated levels in rice potentially exceeds the maximum intake of As from drinking water (based on consumption of 1 L of 0.01 mg L-1 In. As) and Californian state exposure limits. Further studies on the transformation of As in soil, grain As bioavailability in the human gastrointestinal tract, and grain elemental speciation trends are critical.
Resumo:
High levels of As in groundwater commonly found in Bangladesh and other parts of Asia not only pose a risk via drinking water consumption but also a risk in agricultural sustainability and food safety. This review attempts to provide an overview of current knowledge and gaps related to the assessment and management of these risks, including the behaviour of As in the soil-plant system, uptake, phytotoxicity, As speciation in foods, dietary habits, and human health risks. Special emphasis has been given to the situation in Bangladesh, where groundwater via shallow tube wells is the most important source of irrigation water in the dry season. Within the soil-plant system, there is a distinct difference in behaviour of As under flooded conditions, where arsenite (AsIII) predominates, and under nonflooded conditions, where arsenate (AsV) predominates. The former is regarded as most toxic to humans and plants. Limited data indicate that As-contaminated irrigation water can result in a slow buildup of As in the topsoil. In some cases the buildup is reflected by the As levels in crops, in others not. It is not yet possible to predict As uptake and toxicity in plants based on soil parameters. It is unknown under what conditions and in what time frame As is building up in the soil. Representative phytotoxicity data necessary to evaluate current and future soil concentrations are not yet available. Although there are no indications that crop production is currently inhibited by As, long-term risks are clearly present. Therefore, with concurrent assessments of the risks, management options to further prevent As accumulation in the topsoil should already have been explored. With regard to human health, data on As speciation in foods in combination with food consumption data are needed to assess dietary exposure, and these data should include spatial and seasonal variability. It is important to control confounding factors in assessing the risks. In a country where malnutrition is prevalent, levels of inorganic As in foods should be balanced against the nutritional value of the foods. Regarding agriculture, As is only one of the many factors that may pose a risk to the sustainability of crop production. Other risk factors such as nutrient depletion and loss of organic matter also must be taken into account to set priorities in terms of research, management, and overall strategy.
Resumo:
Ingestion of drinking water is not the only elevated source of arsenic to the diet in the Bengal Delta. Even at background levels, the arsenic in rice contributes considerably to arsenic ingestion in subsistence rice diets. We set out to survey As speciation in different rice varieties from different parts of the globe to understand the contribution of rice to arsenic exposure. Pot experiments were utilized to ascertain whether growing rice on As contaminated soil affected speciation and whether genetic variation accounted for uptake and speciation. USA long grain rice had the highest mean arsenic level in the grain at 0.26 µg As g-1 (n = 7), and the highest grain arsenic value of the survey at 0.40 µg As g-1. The mean arsenic level of Bangladeshi rice was 0.13 µg As g-1 (n = 15). The main As species detected in the rice extract were AsIII, DMAV, and AsV. In European, Bangladeshi, and Indian rice 64 ± 1% (n = 7), 80 ± 3% (n = 11), and 81 ± 4% (n = 15), respectively, of the recovered arsenic was found to be inorganic. In contrast, DMAV was the predominant species in rice from the USA, with only 42 ± 5% (n = 12) of the arsenic being inorganic. Pot experiments show that the proportions of DMAV in the grain are significantly dependent on rice cultivar (p = 0.026) and that plant nutrient status is effected by arsenic exposure. Ingestion of drinking water is not the only elevated source of arsenic to the diet in the Bengal Delta. Even at background levels, the arsenic in rice contributes considerably to arsenic ingestion in subsistence rice diets. We set out to survey As speciation in different rice varieties from different parts of the globe to understand the contribution of rice to arsenic exposure. Pot experiments were utilized to ascertain whether growing rice on As contaminated soil affected speciation and whether genetic variation accounted for uptake and speciation. USA long grain rice had the highest mean arsenic level in the grain at 0.26 µg As g-1 (n = 7), and the highest grain arsenic value of the survey at 0.40 µg As g-1. The mean arsenic level of Bangladeshi rice was 0.13 µg As g-1 (n = 15). The main As species detected in the rice extract were AsIII, DMAV, and AsV. In European, Bangladeshi, and Indian rice 64 ± 1% (n = 7), 80 ± 3% (n = 11), and 81 ± 4% (n = 15), respectively, of the recovered arsenic was found to be inorganic. In contrast, DMAV was the predominant species in rice from the USA, with only 42 ± 5% (n = 12) of the arsenic being inorganic. Pot experiments show that the proportions of DMAV in the grain are significantly dependent on rice cultivar (p = 0.026) and that plant nutrient status is effected by arsenic exposure.
Resumo:
Arsenic contaminated groundwater is used extensively in Bangladesh to irrigate the staple food of the region, paddy rice (Oryza sativa L.). To determine if this irrigation has led to a buildup of arsenic levels in paddy fields, and the consequences for arsenic exposure through rice ingestion, a survey of arsenic levels in paddy soils and rice grain was undertaken. Survey of paddy soils throughout Bangladesh showed that arsenic levels were elevated in zones where arsenic in groundwater used for irrigation was high, and where these tube-wells have been in operation for the longest period of time. Regression of soil arsenic levels with tube-well age was significant. Arsenic levels reached 46 microg g(-1) dry weight in the most affected zone, compared to levels below l0 microg g(-1) in areas with low levels of arsenic in the groundwater. Arsenic levels in rice grain from an area of Bangladesh with low levels of arsenic in groundwaters and in paddy soils showed that levels were typical of other regions of the world. Modeling determined, even these typical grain arsenic levels contributed considerably to arsenic ingestion when drinking water contained the elevated quantity of 0.1 mg L(-1). Arsenic levels in rice can be further elevated in rice growing on arsenic contaminated soils, potentially greatly increasing arsenic exposure of the Bangladesh population. Rice grain grown in the regions where arsenic is building up in the soil had high arsenic concentrations, with three rice grain samples having levels above 1.7 microg g(-1).
Resumo:
A process for the treatment of water comprising at least the steps of : (a) providing the water in laminar flow; and (b) providing bubblefree aeration to the water. The present invention introduces aerobic treatment into wastewater settlement without any hindrance to the settlement process. The present invention is useable for any settlement step or stage, without limitation, the commonest being primary settlement or final settling.