955 resultados para Pulsed laser range finder


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diffraction properties of volume holographic gratings are studied when the gratings are illuminated by an ultrashort pulsed beam with different polarization states. The developed coupled wave theory of Kogelnik is used. Considering the dispersion effect of the grating media, solutions for the diffracted and transmitted intensities, diffraction efficiencies and the bandwidths of the gratings are given in transmission volume holographic gratings and reflection volume holographic gratings. The bandwidths of the gratings are reduced by the dispersion effect of the grating media. They also have different influences on the diffraction of an ultrashort pulsed beam with different polarization states. For different values of the ratio of the spectral bandwidth of the input pulse to that of the grating, the changes of the spectral and temporal distributions of the diffracted intensities, as well as the diffraction efficiencies of the gratings are shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on a modified coupled wave theory of Kogelnik, we have studied the diffraction of an ultrashort pulsed beam with an arbitrary polarization state from a volume holographic grating in photorefractive LiNbO3 crystals. The results indicate that the diffracted intensity distributions in the spectral and temporal domains and the diffraction efficiency of the grating are both changed by the polarization state and spectral bandwidth of the input pulsed beam. A method is given of choosing the grating parameters and input conditions to obtain a large variation range of the spectral bandwidth of the diffracted pulsed beam with an appropriate diffraction efficiency. Our study presents a possibility of using a volume holographic grating recorded in anisotropic materials to shape a broadband ultrashort pulsed beam by modulating its polarization state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optical communication scheme of 2-D pattern transfer based on imaging optics for submarine laser uplink communication (SLUC) is suggested. Unlike the methods aiming at avoiding neighboring crosstalk used in traditional multi-channel optical beam transferring, we make full use of the overlapping of each spreading beam other than controlling divergence effect of each beam to avoid interference noise. The apparent parameters have been introduced to simplify theoretical analysis of optical pattern transfer problem involving underwater condition, with the help of which the complex beam propagation inside two kinds of mediums can be easily reduced to brief beam transfer only inside air medium. In this paper, optical transmission path and receiver terminal optics geometry have been described in detail. The link range equation and system uplink performance analysis have also been given. At last, results of a proof-of-concept experiment indicate good feasibility of the proposed SLUC model. © 2007 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystallization in amorphous Ge2Sb2Te5 films by irradiation with femtosecond laser was investigated. The reflectivity and X-ray diffraction measurements confirmed that the crystalline state has been achieved in amorphous Ge2Sb2Te5 films under the irradiation of fermosecond laser with an average power of 65 mW at a frequency of 1000 Hz and a pulsed width of 120 fs. The surface morphology before and after femtosecond laser irradiation was studied by scanning electron microscope; results showed that the surface of films with irradiation of femtosecond laser was composed of some the crystallized micro-region. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sheet resistance of laser-irradiated Ge2Sb2Te5 thin films prepared by magnetron sputtering was measured by the four-point probe method. With increasing laser power the sheet resistance undergoes an abrupt drop from 10(7) to 10(3) Omega/square at about 580 mW. The abrupt drop in resistance is due to the structural change from amorphous to crystalline state as revealed by X-ray diffraction (XRD) study of the samples around the abrupt change point. Crystallized dots were also formed in the amorphous Ge2Sb2Te5 films by focused short pulse laser-irradiated, the resistivities at the crystallized dots and the non-crystallized area are 3.375 x 10(-3) and 2.725 Omega m, sheet resistance is 3.37 x 10(4) and 2.725 x 10(7) Omega/square respectively, deduced from the I-V Curves that is obtained by conductive atomic force microscope (C-AFM). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By employing a continuous-wave (CW) Ti:sapphire tunable laser as a pumping source and a Cr4+:YAG single crystal as the saturable absorber (SA), a passively Q-switched Nd:YAG ceramic laser has been demonstrated at room temperature. With an absorbed pumping power of 541 mW at 808 nm, an average output power of 61 mW at 1064 nm has been obtained with 3.5 mu J pulse energy, 15 ns pulse width and 18.18 kHz repetition rate, and the corresponding slope-efficiency is 15%. The relationships between the pulse width, repetition rate, average output power, pulse energy, and peak power on the absorbed pumping power for different initial transmission of the Cr4+:YAG SA are discussed separately. The Nd:YAG ceramic is one of the most promising laser materials for compact, efficient, all-solid-state pulsed lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel double-slab Nd:YAG laser, which uses face-pumped slab medium cooled by liquid with different temperatures on both sides, is proposed. The thermal distortion of wavefront caused by the non-uniform temperature distribution in the laser gain media can be self-compensated. According to the method of operation, the models of the temperature distribution and stress are presented, and the analytic solutions for the model are derived. Furthermore, the numerical simulations with pulse pumping energy of 10 J and repetition frequencies of 500 and 1000 Hz are calculated respectively for Nd:YAG laser medium. The simulation results show that the temperature gradient remains the approximative linearity, and the heat stress is within the extreme range. Then the absorption coefficient is also discussed. The result indicates that the doping concentration cannot be too large for the high repetition frequency laser. It has been proved that the high repetition frequency, high laser beam quality, and high average output power of the order of kilowatt of Nd: YAG slab laser can be achieved in this structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A diode pumped injection seeded single-longitudinal-mode (SLM) Nd:YAG laser is achieved by using the resonance-detection technique in Q-switching operation. The pulsed oscillator laser uses a folded cavity to achieve compact construction. This system operates at 100 Hz and provides over 20 mJ/pulse of single-frequency 1064 nm output. The M-2 values of horizontal and vertical axes are 1.58 and 1.41, respectively. The probability of putting out single-longitudinal-mode pulses is 100%. The 355 nm laser output produced by frequency tripling has a linewidth less than 200 MHz. The laser can run over eight hours continually without mode hopping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coupling efficiency of laser beam to multimode fiber is given by geometrical optics, and the relation between the maximum coupling efficiency and the beam propagation factor M-2 is analyzed. An equivalent factor M-F(2) for the multimode fiber is introduced to characterize the fiber coupling capability. The coupling efficiency of laser beam to multimode fiber is calculated in respect of the ratio M-2/M-F(2) by the overlapping integral theory. The optimal coupling efficiency can be roughly estimated by the ratio of M-2 to M-F(2) but with a large error range. The deviation comes from the lacks of information on the detail of phase and intensity profile in the beam factor M-2. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical loss coefficient at 1053-nm wavelength, influenced by Fe ions in N31-type Nd-doped phosphate laser glass, was determined precisely and analyzed in detail. It is found that the optical loss coefficient per unit of Fe concentration (cm^(-1)/ppmw) increases with Fe concentration in the range of 0---300 ppmw, but it approaches a constant as the Fe concentration is larger than 300 ppmw. Such a concentration effect is due to a shift in the redox equilibrium between Fe3+ and Fe2+ ions in the glass. The effect of oxygen pressure, temperature, and variable valence states of other metal ions in glass samples on the optical loss is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous glass with high-SiO2 content was impregnated with Nd ions, and subsequently sintered at 1100 degrees C into a compact non-porous glass in air or reducing atmosphere. Sintering in a reducing atmosphere produced an intense violet-blue fluorescence at 394 nm. However, the sintering atmospheres almost did not affect the fluorescence properties in the infrared range. A good performance Nd3+-doped silica microchip laser operating at 1064 nm was demonstrated. The Nd-doped sintering glasses with high-SiO2 content are potential host materials for high power solid-state lasers and new transparent fluorescence materials. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrated efficient laser action of a new ytterbium-doped oxyorthosilicate crystal Yb:LuYSiO5 ( Yb: LYSO) under high-power diode-pumping. The spectroscopic features and laser performance of the alloyed oxyorthosilicate crystal are compared with those of ytterbium-doped lutetium and yttrium oxyorthosilicates. In the continuous-wave laser operation of Yb: LYSO, a maximal slope efficiency of 96% and output power of 7.8 W were respectively achieved with different pump sources. The Yb: LYSO laser exhibits not only little sensitivity to the pump wavelength drift but also a broad tunability. By using a dispersive prism as the intracavity tuning element, we demonstrated that the continuous-wave Yb: LYSO laser exhibit a continuous tunability in the spectral range of 1014-1091 nm. (c) 2006 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large and transparent Yb:FAP crystal with dimensions up to circle divide 30 mm x 85 mm has been grown by the Czochralski method. The preparation of the raw material has been investigated. X-ray power diffraction studies of Yb:FAP crystal confirm that the as-grown crystal is isostructural with the FAP crystal. The crystalline quality has been studied using X-ray rocking curve analysis. The segregation coefficient of Yb3+ in the Yb:FAP crystal has been also determined. Linear thermal expansion coefficients in [001] and [100] directions have been measured in the 30-800 degrees C temperature range. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Femtosecond pulsed lasers have been widely used for materials microprocessing. Due to their ultrashort pulse width and ultrahigh light intensity, the process is generally characterized by the nonthermal diffusion process. We observed various induced microstructures such as refractive-index-changed structures, color center defects, microvoids and microcracks in transparent materials (e.g., glasses after the femtosecond laser irradiation), and discussed the possible applications of the microstructures in the fabrication of various micro optical devices [e.g., optical waveguides, microgratings, microlenses, fiber attenuators, and three-dimensional (3D) optical memory]. In this paper, we review our recent research developments on single femtosecond-laser-induced nanostructures. We introduce the space-selective valence state manipulation of active ions, precipitation and control of metal nanoparticles and light polarization-dependent permanent nanostructures, and discuss the mechanisms and possible applications of the observed phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using a pump recycling configuration, the maximum power of 8.1 W in the wavelength range 1.935-1.938 mu m is generated by a 5-mm long Tm:YAlO3 (4 at. %) laser operating at 18 degrees C with a pump power of 24 W. The highest slope efficiency of 42% is attained, and the pump quantum efficiency is up to 100%. The Tm:YAlO3 laser is employed as a pumping source of singly-doped Ho(l%):GdVO4 laser operating at room temperature, in which continuous wave output power of greater than 0.2 W at 2.05 mu m is achieved with a slope efficiency of 9%.