901 resultados para Process Modeling, Collaboration, Distributed Modeling, Collaborative Technology


Relevância:

50.00% 50.00%

Publicador:

Resumo:

A systematic approach to model nonlinear systems using norm-bounded linear differential inclusions (NLDIs) is proposed in this paper. The resulting NLDI model is suitable for the application of linear control design techniques and, therefore, it is possible to fulfill certain specifications for the underlying nonlinear system, within an operating region of interest in the state-space, using a linear controller designed for this NLDI model. Hence, a procedure to design a dynamic output feedback controller for the NLDI model is also proposed in this paper. One of the main contributions of the proposed modeling and control approach is the use of the mean-value theorem to represent the nonlinear system by a linear parameter-varying model, which is then mapped into a polytopic linear differential inclusion (PLDI) within the region of interest. To avoid the combinatorial problem that is inherent of polytopic models for medium- and large-sized systems, the PLDI is transformed into an NLDI, and the whole process is carried out ensuring that all trajectories of the underlying nonlinear system are also trajectories of the resulting NLDI within the operating region of interest. Furthermore, it is also possible to choose a particular structure for the NLDI parameters to reduce the conservatism in the representation of the nonlinear system by the NLDI model, and this feature is also one important contribution of this paper. Once the NLDI representation of the nonlinear system is obtained, the paper proposes the application of a linear control design method to this representation. The design is based on quadratic Lyapunov functions and formulated as search problem over a set of bilinear matrix inequalities (BMIs), which is solved using a two-step separation procedure that maps the BMIs into a set of corresponding linear matrix inequalities. Two numerical examples are given to demonstrate the effectiveness of the proposed approach.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Polynomial Chaos Expansion (PCE) is widely recognized as a flexible tool to represent different types of random variables/processes. However, applications to real, experimental data are still limited. In this article, PCE is used to represent the random time-evolution of metal corrosion growth in marine environments. The PCE coefficients are determined in order to represent data of 45 corrosion coupons tested by Jeffrey and Melchers (2001) at Taylors Beach, Australia. Accuracy of the representation and possibilities for model extrapolation are considered in the study. Results show that reasonably accurate smooth representations of the corrosion process can be obtained. The representation is not better because a smooth model is used to represent non-smooth corrosion data. Random corrosion leads to time-variant reliability problems, due to resistance degradation over time. Time variant reliability problems are not trivial to solve, especially under random process loading. Two example problems are solved herein, showing how the developed PCE representations can be employed in reliability analysis of structures subject to marine corrosion. Monte Carlo Simulation is used to solve the resulting time-variant reliability problems. However, an accurate and more computationally efficient solution is also presented.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Micelles composed of amphiphilic copolymers linked to a radioactive element are used in nuclear medicine predominantly as a diagnostic application. A relevant advantage of polymeric micelles in aqueous solution is their resulting particle size, which can vary from 10 to 100 nm in diameter. In this review, polymeric micelles labeled with radioisotopes including technetium (99mTc) and indium (111In), and their clinical applications for several diagnostic techniques, such as single photon emission computed tomography (SPECT), gamma-scintigraphy, and nuclear magnetic resonance (NMR), were discussed. Also, micelle use primarily for the diagnosis of lymphatic ducts and sentinel lymph nodes received special attention. Notably, the employment of these diagnostic techniques can be considered a significant tool for functionally exploring body systems as well as investigating molecular pathways involved in the disease process. The use of molecular modeling methodologies and computer-aided drug design strategies can also yield valuable information for the rational design and development of novel radiopharmaceuticals.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME - absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Slope failure occurs in many areas throughout the world and it becomes an important problem when it interferes with human activity, in which disasters provoke loss of life and property damage. In this research we investigate the slope failure through the centrifuge modeling, where a reduced-scale model, N times smaller than the full-scale (prototype), is used whereas the acceleration is increased by N times (compared with the gravity acceleration) to preserve the stress and the strain behavior. The aims of this research “Centrifuge modeling of sandy slopes” are in extreme synthesis: 1) test the reliability of the centrifuge modeling as a tool to investigate the behavior of a sandy slope failure; 2) understand how the failure mechanism is affected by changing the slope angle and obtain useful information for the design. In order to achieve this scope we arranged the work as follows: Chapter one: centrifuge modeling of slope failure. In this chapter we provide a general view about the context in which we are working on. Basically we explain what is a slope failure, how it happens and which are the tools available to investigate this phenomenon. Afterwards we introduce the technology used to study this topic, that is the geotechnical centrifuge. Chapter two: testing apparatus. In the first section of this chapter we describe all the procedures and facilities used to perform a test in the centrifuge. Then we explain the characteristics of the soil (Nevada sand), like the dry unit weight, water content, relative density, and its strength parameters (c,φ), which have been calculated in laboratory through the triaxial test. Chapter three: centrifuge tests. In this part of the document are presented all the results from the tests done in centrifuge. When we talk about results we refer to the acceleration at failure for each model tested and its failure surface. In our case study we tested models with the same soil and geometric characteristics but different angles. The angles tested in this research were: 60°, 75° and 90°. Chapter four: slope stability analysis. We introduce the features and the concept of the software: ReSSA (2.0). This software allows us to calculate the theoretical failure surfaces of the prototypes. Then we show in this section the comparisons between the experimental failure surfaces of the prototype, traced in the laboratory, and the one calculated by the software. Chapter five: conclusion. The conclusion of the research presents the results obtained in relation to the two main aims, mentioned above.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

For many years, RF and analog integrated circuits have been mainly developed using bipolar and compound semiconductor technologies due to their better performance. In the last years, the advance made in CMOS technology allowed analog and RF circuits to be built with such a technology, but the use of CMOS technology in RF application instead of bipolar technology has brought more issues in terms of noise. The noise cannot be completely eliminated and will therefore ultimately limit the accuracy of measurements and set a lower limit on how small signals can be detected and processed in an electronic circuit. One kind of noise which affects MOS transistors much more than bipolar ones is the low-frequency noise. In MOSFETs, low-frequency noise is mainly of two kinds: flicker or 1/f noise and random telegraph signal noise (RTS). The objective of this thesis is to characterize and to model the low-frequency noise by studying RTS and flicker noise under both constant and switched bias conditions. The effect of different biasing schemes on both RTS and flicker noise in time and frequency domain has been investigated.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Design parameters, process flows, electro-thermal-fluidic simulations and experimental characterizations of Micro-Electro-Mechanical-Systems (MEMS) suited for gas-chromatographic (GC) applications are presented and thoroughly described in this thesis, whose topic belongs to the research activities the Institute for Microelectronics and Microsystems (IMM)-Bologna is involved since several years, i.e. the development of micro-systems for chemical analysis, based on silicon micro-machining techniques and able to perform analysis of complex gaseous mixtures, especially in the field of environmental monitoring. In this regard, attention has been focused on the development of micro-fabricated devices to be employed in a portable mini-GC system for the analysis of aromatic Volatile Organic Compounds (VOC) like Benzene, Toluene, Ethyl-benzene and Xylene (BTEX), i.e. chemical compounds which can significantly affect environment and human health because of their demonstrated carcinogenicity (benzene) or toxicity (toluene, xylene) even at parts per billion (ppb) concentrations. The most significant results achieved through the laboratory functional characterization of the mini-GC system have been reported, together with in-field analysis results carried out in a station of the Bologna air monitoring network and compared with those provided by a commercial GC system. The development of more advanced prototypes of micro-fabricated devices specifically suited for FAST-GC have been also presented (silicon capillary columns, Ultra-Low-Power (ULP) Metal OXide (MOX) sensor, Thermal Conductivity Detector (TCD)), together with the technological processes for their fabrication. The experimentally demonstrated very high sensitivity of ULP-MOX sensors to VOCs, coupled with the extremely low power consumption, makes the developed ULP-MOX sensor the most performing metal oxide sensor reported up to now in literature, while preliminary test results proved that the developed silicon capillary columns are capable of performances comparable to those of the best fused silica capillary columns. Finally, the development and the validation of a coupled electro-thermal Finite Element Model suited for both steady-state and transient analysis of the micro-devices has been described, and subsequently implemented with a fluidic part to investigate devices behaviour in presence of a gas flowing with certain volumetric flow rates.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Synthetic Biology is a relatively new discipline, born at the beginning of the New Millennium, that brings the typical engineering approach (abstraction, modularity and standardization) to biotechnology. These principles aim to tame the extreme complexity of the various components and aid the construction of artificial biological systems with specific functions, usually by means of synthetic genetic circuits implemented in bacteria or simple eukaryotes like yeast. The cell becomes a programmable machine and its low-level programming language is made of strings of DNA. This work was performed in collaboration with researchers of the Department of Electrical Engineering of the University of Washington in Seattle and also with a student of the Corso di Laurea Magistrale in Ingegneria Biomedica at the University of Bologna: Marilisa Cortesi. During the collaboration I contributed to a Synthetic Biology project already started in the Klavins Laboratory. In particular, I modeled and subsequently simulated a synthetic genetic circuit that was ideated for the implementation of a multicelled behavior in a growing bacterial microcolony. In the first chapter the foundations of molecular biology are introduced: structure of the nucleic acids, transcription, translation and methods to regulate gene expression. An introduction to Synthetic Biology completes the section. In the second chapter is described the synthetic genetic circuit that was conceived to make spontaneously emerge, from an isogenic microcolony of bacteria, two different groups of cells, termed leaders and followers. The circuit exploits the intrinsic stochasticity of gene expression and intercellular communication via small molecules to break the symmetry in the phenotype of the microcolony. The four modules of the circuit (coin flipper, sender, receiver and follower) and their interactions are then illustrated. In the third chapter is derived the mathematical representation of the various components of the circuit and the several simplifying assumptions are made explicit. Transcription and translation are modeled as a single step and gene expression is function of the intracellular concentration of the various transcription factors that act on the different promoters of the circuit. A list of the various parameters and a justification for their value closes the chapter. In the fourth chapter are described the main characteristics of the gro simulation environment, developed by the Self Organizing Systems Laboratory of the University of Washington. Then, a sensitivity analysis performed to pinpoint the desirable characteristics of the various genetic components is detailed. The sensitivity analysis makes use of a cost function that is based on the fraction of cells in each one of the different possible states at the end of the simulation and the wanted outcome. Thanks to a particular kind of scatter plot, the parameters are ranked. Starting from an initial condition in which all the parameters assume their nominal value, the ranking suggest which parameter to tune in order to reach the goal. Obtaining a microcolony in which almost all the cells are in the follower state and only a few in the leader state seems to be the most difficult task. A small number of leader cells struggle to produce enough signal to turn the rest of the microcolony in the follower state. It is possible to obtain a microcolony in which the majority of cells are followers by increasing as much as possible the production of signal. Reaching the goal of a microcolony that is split in half between leaders and followers is comparatively easy. The best strategy seems to be increasing slightly the production of the enzyme. To end up with a majority of leaders, instead, it is advisable to increase the basal expression of the coin flipper module. At the end of the chapter, a possible future application of the leader election circuit, the spontaneous formation of spatial patterns in a microcolony, is modeled with the finite state machine formalism. The gro simulations provide insights into the genetic components that are needed to implement the behavior. In particular, since both the examples of pattern formation rely on a local version of Leader Election, a short-range communication system is essential. Moreover, new synthetic components that allow to reliably downregulate the growth rate in specific cells without side effects need to be developed. In the appendix are listed the gro code utilized to simulate the model of the circuit, a script in the Python programming language that was used to split the simulations on a Linux cluster and the Matlab code developed to analyze the data.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

From the perspective of a new-generation opto-electronic technology based on organic semiconductors, a major objective is to achieve a deep and detailed knowledge of the structure-property relationships, in order to optimize the electronic, optical, and charge transport properties by tuning the chemical-physical characteristics of the compounds. The purpose of this dissertation is to contribute to such understanding, through suitable theoretical and computational studies. Precisely, the structural, electronic, optical, and charge transport characteristics of several promising organic materials recently synthesized are investigated by means of an integrated approach encompassing quantum-chemical calculations, molecular dynamics and kinetic Monte Carlo simulations. Particular care is addressed to the rationalization of optical and charge transport properties in terms of both intra- and intermolecular features. Moreover, a considerable part of this project involves the development of a home-made set of procedures and parts of software code required to assist the modeling of charge transport properties in the framework of the non-adiabatic hopping mechanism applied to organic crystalline materials. As a first part of my investigations, I mainly discuss the optical, electronic, and structural properties of several core-extended rylene derivatives, which can be regarded to as model compounds for graphene nanoribbons. Two families have been studied, consisting in bay-linked perylene bisimide oligomers and N-annulated rylenes. Beside rylene derivatives, my studies also concerned electronic and spectroscopic properties of tetracene diimides, quinoidal oligothiophenes, and oxygen doped picene. As an example of device application, I studied the structural characteristics governing the efficiency of resistive molecular memories based on a derivative of benzoquinone. Finally, as a second part of my investigations, I concentrate on the charge transport properties of perylene bisimides derivatives. Precisely, a comprehensive study of the structural and thermal effects on the charge transport of several core-twisted chlorinated and fluoro-alkylated perylene bisimide n-type semiconductors is presented.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Extrusion is a process used to form long products of constant cross section, from simple billets, with a high variety of shapes. Aluminum alloys are the materials most processed in the extrusion industry due to their deformability and the wide field of applications that range from buildings to aerospace and from design to automotive industries. The diverse applications imply different requirements that can be fulfilled by the wide range of alloys and treatments, that is from critical structural application to high quality surface and aesthetical aspect. Whether one or the other is the critical aspect, they both depend directly from microstructure. The extrusion process is moreover marked by high deformations and complex strain gradients making difficult the control of microstructure evolution that is at present not yet fully achieved. Nevertheless the evolution of Finite Element modeling has reached a maturity and can therefore start to be used as a tool for investigation and prediction of microstructure evolution. This thesis will analyze and model the evolution of microstructure throughout the entire extrusion process for 6XXX series aluminum alloys. Core phase of the work was the development of specific tests to investigate the microstructure evolution and validate the model implemented in a commercial FE code. Along with it two essential activities were carried out for a correct calibration of the model beyond the simple research of contour parameters, thus leading to the understanding and control of both code and process. In this direction activities were also conducted on building critical knowhow on the interpretation of microstructure and extrusion phenomena. It is believed, in fact, that the sole analysis of the microstructure evolution regardless of its relevance in the technological aspects of the process would be of little use for the industry as well as ineffective for the interpretation of the results.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Photovoltaic (PV) solar panels generally produce electricity in the 6% to 16% efficiency range, the rest being dissipated in thermal losses. To recover this amount, hybrid photovoltaic thermal systems (PVT) have been devised. These are devices that simultaneously convert solar energy into electricity and heat. It is thus interesting to study the PVT system globally from different point of views in order to evaluate advantages and disadvantages of this technology and its possible uses. In particular in Chapter II, the development of the PVT absorber numerical optimization by a genetic algorithm has been carried out analyzing different internal channel profiles in order to find a right compromise between performance and technical and economical feasibility. Therefore in Chapter III ,thanks to a mobile structure built into the university lab, it has been compared experimentally electrical and thermal output power from PVT panels with separated photovoltaic and solar thermal productions. Collecting a lot of experimental data based on different seasonal conditions (ambient temperature,irradiation, wind...),the aim of this mobile structure has been to evaluate average both thermal and electrical increasing and decreasing efficiency values obtained respect to separate productions through the year. In Chapter IV , new PVT and solar thermal equation based models in steady state conditions have been developed by software Dymola that uses Modelica language. This permits ,in a simplified way respect to previous system modelling softwares, to model and evaluate different concepts about PVT panel regarding its structure before prototyping and measuring it. Chapter V concerns instead the definition of PVT boundary conditions into a HVAC system . This was made trough year simulations by software Polysun in order to finally assess the best solar assisted integrated structure thanks to F_save(solar saving energy)factor. Finally, Chapter VI presents the conclusion and the perspectives of this PhD work.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

During the last decade peach and nectarine fruit have lost considerable market share, due to increased consumer dissatisfaction with quality at retail markets. This is mainly due to harvesting of too immature fruit and high ripening heterogeneity. The main problem is that the traditional used maturity indexes are not able to objectively detect fruit maturity stage, neither the variability present in the field, leading to a difficult post-harvest management of the product and to high fruit losses. To assess more precisely the fruit ripening other techniques and devices can be used. Recently, a new non-destructive maturity index, based on the vis-NIR technology, the Index of Absorbance Difference (IAD), that correlates with fruit degreening and ethylene production, was introduced and the IAD was used to study peach and nectarine fruit ripening from the “field to the fork”. In order to choose the best techniques to improve fruit quality, a detailed description of the tree structure, of fruit distribution and ripening evolution on the tree was faced. More in details, an architectural model (PlantToon®) was used to design the tree structure and the IAD was applied to characterize the maturity stage of each fruit. Their combined use provided an objective and precise evaluation of the fruit ripening variability, related to different training systems, crop load, fruit exposure and internal temperature. Based on simple field assessment of fruit maturity (as IAD) and growth, a model for an early prediction of harvest date and yield, was developed and validated. The relationship between the non-destructive maturity IAD, and the fruit shelf-life, was also confirmed. Finally the obtained results were validated by consumer test: the fruit sorted in different maturity classes obtained a different consumer acceptance. The improved knowledge, leaded to an innovative management of peach and nectarine fruit, from “field to market”.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Characteristics of modern food demand force retailers to acquire more information about product process along the food supply chain to ensure that product are in accordance with consumer preference. Therefore, the product process involves more information flows between buyer and supplier which requires collaborative efforts. These changes translate into several studies on the inter-organizational relationship in agri-food systems. Studies on inter-organizational relationships have been conducted in various academic disciplines, including sociology, psychology, law, economics, marketing, management, and combination of these. Inter-organizational relationships is an interaction between organizations which involved firms horizontally, as well as, vertically. In this study we deal with vertical, buyer-seller relationship which are sometimes referred to chain relationships. We define vertical business relationship in the agriculture-food based sector as “agri-food chain relationships”. The focus is on sustainable inter-organizational relationships in a way that they can be scientifically investigated. We study characteristics which ensure that a relationship is long-lasting and rewarding for all involved parties in the sardinian dairy. We test the theoretical model using structural equation modeling. The results suggest that the most important determinant for the relationships is technology and the price isn’t significant for the relationship governance.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. Knowledge of the spatial and temporal distribution of CCN in the atmosphere is essential to understand and describe the effects of aerosols in meteorological models. In this study, CCN properties were measured in polluted and pristine air of different continental regions, and the results were parameterized for efficient prediction of CCN concentrations.The continuous-flow CCN counter used for size-resolved measurements of CCN efficiency spectra (activation curves) was calibrated with ammonium sulfate and sodium chloride aerosols for a wide range of water vapor supersaturations (S=0.068% to 1.27%). A comprehensive uncertainty analysis showed that the instrument calibration depends strongly on the applied particle generation techniques, Köhler model calculations, and water activity parameterizations (relative deviations in S up to 25%). Laboratory experiments and a comparison with other CCN instruments confirmed the high accuracy and precision of the calibration and measurement procedures developed and applied in this study.The mean CCN number concentrations (NCCN,S) observed in polluted mega-city air and biomass burning smoke (Beijing and Pearl River Delta, China) ranged from 1000 cm−3 at S=0.068% to 16 000 cm−3 at S=1.27%, which is about two orders of magnitude higher than in pristine air at remote continental sites (Swiss Alps, Amazonian rainforest). Effective average hygroscopicity parameters, κ, describing the influence of chemical composition on the CCN activity of aerosol particles were derived from the measurement data. They varied in the range of 0.3±0.2, were size-dependent, and could be parameterized as a function of organic and inorganic aerosol mass fraction. At low S (≤0.27%), substantial portions of externally mixed CCN-inactive particles with much lower hygroscopicity were observed in polluted air (fresh soot particles with κ≈0.01). Thus, the aerosol particle mixing state needs to be known for highly accurate predictions of NCCN,S. Nevertheless, the observed CCN number concentrations could be efficiently approximated using measured aerosol particle number size distributions and a simple κ-Köhler model with a single proxy for the effective average particle hygroscopicity. The relative deviations between observations and model predictions were on average less than 20% when a constant average value of κ=0.3 was used in conjunction with variable size distribution data. With a constant average size distribution, however, the deviations increased up to 100% and more. The measurement and model results demonstrate that the aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the measurement results and parameterizations presented in this study can be directly implemented in detailed process models as well as in large-scale atmospheric and climate models for efficient description of the CCN activity of atmospheric aerosols.