976 resultados para Pregnancy - Induced hypertension
Resumo:
Some herbicides are suspected of promoting teratogenic, carcinogenic and mutagenic events. Detection of induced mitotic crossing-over has proven to be an indirect way of testing the carcinogenic properties of suspicious substances, because mitotic crossing-over is involved in the multistep process of carcinogenesis. We examined mitotic crossing-over induced by two commercial herbicides (diuron and trifluralin) in diploid strains of Aspergillus nidulans based on the homozygotization index. Low doses (2.5 mu g/mL) of diuron were sufficient to increase the mean homozygotization index in 2.1 and 11.3 times for UT448//UT196 and Dp II-I//UT196, respectively, whereas the same dose of trifluralin increased this mean only 1.2 (UT448//UT196) and 3.5 (Dp II-I//UT196) times, respectively. The lower homozygotization index value found for trifluralin could be due to its interference with mitotic crossing-over in eukaryotic cells. We concluded that the diploid Dp II-I//UT196 of A. nidulans is more sensitive to organic compounds than UT448//UT196; these compounds cause recombinational events at a greater frequency in the latter diploid. This system holds promise as an initial test for carcino-genicity of organic compounds, including herbicides.
Resumo:
It is well known that resonance can be induced by external noise or diversity. Here we show that resonance can be induced even by a phase disorder in coupled excitable neurons with subthreshold activity. In contrast to the case of identical phase, we find that phase disorder plays an active role in enhancing neuronal activity. We also uncover that the presence of phase disorder can induce a double resonance phenomenon: phase disorder and coupling strength both can enhance neuronal firing activity. A physical theory is formulated to help understand the mechanism behind this double resonance phenomenon.
Resumo:
The effect of immobile dust on stability of a magnetized rotating plasma is analyzed. In the presence of dust, a term containing an electric field appears in the one-fluid equation of plasma motion. This electric field leads to an instability of the magnetized rotating plasma called the dust-induced rotational instability (DRI). The DRI is related to the charge imbalance between plasma ions and electrons introduced by the presence of charged dust. In contrast to the well-known magnetorotational instability requiring the decreasing radial profile of the plasma rotation frequency, the DRI can appear for an increasing rotation frequency profile. (c) 2008 American Institute of Physics.
Resumo:
The combined effects of concentration and pH on the conformational states of bovine serum albumin (BSA) are investigated by small-angle x-ray scattering. Serum albumins, at physiological conditions, are found at concentrations of similar to 35-45 mg/mL (42 mg/mL in the case of humans). In this work, BSA at three different concentrations (10, 25, and 50 mg/mL) and pH values (2.0-9.0) have been studied. Data were analyzed by means of the Global Fitting procedure, with the protein form factor calculated from human serum albumin (HSA) crystallographic structure and the interference function described, considering repulsive and attractive interaction potentials within a random phase approximation. Small-angle x-ray scattering data show that BSA maintains its native state from pH 4.0 up to 9.0 at all investigated concentrations. A pH-dependence of the absolute net protein charge is shown and the charge number per BSA is quantified to 10(2), 8(l), 13(2), 20(2), and 26(2) for pH values 4.0, 5.4, 7.0, 8.0, and 9.0, respectively. The attractive potential diminishes as BSA concentration increases. The coexistence of monomers and dimers is observed at 50 mg/mL and pH 5.4, near the BSA isoelectric point. Samples at pH 2.0 show a different behavior, because BSA overall shape changes as a function of concentration. At 10 mg/mL, BSA is partially unfolded and a strong repulsive protein-protein interaction occurs due to the high amount of exposed charge. At 25 and 50 mg/mL, BSA undergoes some refolding, which likely results in a molten-globule state. This work concludes by confirming that the protein concentration plays an important role on the pH-unfolded BSA state, due to a delicate compromise between interaction forces and crowding effects.
Resumo:
Measurements in Au + Au collisions at root s(NN) = 200 GeV of jet correlations for a trigger hadron at intermediate transverse momentum (p(T,trig)) with associated mesons or baryons at lower p(T,assoc) indicate strong modification of the away-side jet. The ratio of jet-associated baryons to mesons increases with centrality and p(T,assoc). For the most central collisions, the ratio is similar to that for inclusive measurements. This trend is incompatible with in-vacuum fragmentation but could be due to jetlike contributions from correlated soft partons, which recombine upon hadronization.
Resumo:
The thermodynamic properties of the magnetic semiconductors GaMnAs and GaCrAs are studied under biaxial strain. The calculations are based on the projector augmented wave method combined with the generalized quasichemical approach to treat the disorder and composition effects. Considering the influence of biaxial strain, we find a tendency to the suppression of binodal decomposition mainly for GaMnAs under compressive strain. For a substrate with a lattice constant 5% smaller than the one of GaAs, for GaMnAs, the solubility limit increases up to 40%. Thus, the strain can be a useful tool for tailoring magnetic semiconductors to the formation or not of embedded nanoclusters. (C) 2010 American Institute of Physics. [doi:10.1063/1.3448025]
Resumo:
We study a Al(x)Ga(x-1)As parabolic quantum well (PQW) with GaAs/Al(x)Ga(x-1)As square superlattice. The magnetotransport in PQW with intentionally disordered short-period superlattice reveals a surprising transition from electrons distribution over whole parabolic well to independent-layer states with unequal density. The transition occurs in the perpendicular magnetic field at Landau filling factor v approximate to 3 and is signaled by the appearance of the strong and developing fractional quantum Hall (FQH) states and by the enhanced slope of the Hall resistance. We attribute the transition to the possible electron localization in the x-y plane inside the lateral wells, and formation of the FQH states in the central well of the superlattice, driven by electron-electron interaction.
Resumo:
Spectroscopy of the centrosymmetric magnetic semiconductors EuTe and EuSe reveals spin-induced optical second harmonic generation (SHG) in the band gap vicinity at 2.1-2.4 eV. The magnetic field and temperature dependence demonstrates that the SHG arises from the bulk of the materials due to a novel type of nonlinear optical susceptibility caused by the magnetic dipole contribution combined with spontaneous or induced magnetization. This spin-induced susceptibility opens access to a wide class of centrosymmetric systems by harmonics generation spectroscopy.
Resumo:
We report on the observation of microwave-induced resistance oscillations associated with the fractional ratio n/m of the microwave irradiation frequency to the cyclotron frequency for m up to 8 in a two-dimensional electron system with high electron density. The features are quenched at high microwave frequencies independent of the fractional order m. We analyze temperature, power, and frequency dependencies of the magnetoresistance oscillations and discuss them in connection with existing theories.
Resumo:
We report new magnetization measurements on the spin-gap compound NiCl(2)-4SC(NH(2))(2) at the low-field boundary of the magnetic field-induced ordering. The critical density of the magnetization is analyzed in terms of a Bose-Einstein condensation of bosonic quasiparticles. The analysis of the magnetization at the transition leads to the conclusion for the preservation of the U(1) symmetry, as required for Bose-Einstein condensation. The experimental data are well described by quantum Monte Carlo simulations.
Resumo:
Nitrogen-doped carbon nanotubes can provide reactive sites on the porphyrin-like defects. It is well known that many porphyrins have transition-metal atoms, and we have explored transition-metal atoms bonded to those porphyrin-like defects inN-doped carbon nanotubes. The electronic structure and transport are analyzed by means of a combination of density functional theory and recursive Green's function methods. The results determined the heme B-like defect (an iron atom bonded to four nitrogens) is the most stable and has a higher polarization current for a single defect. With randomly positioned heme B defects in nanotubes a few hundred nanometers long, the polarization reaches near 100%, meaning they are effective spin filters. A disorder-induced magnetoresistance effect is also observed in those long nanotubes, and values as high as 20 000% are calculated with nonmagnectic eletrodes.
Resumo:
Defects in one-dimensional (1D) systems can be intrinsically distinct from its three-dimensional counterparts, and polymer films are good candidates for showing both extremes that are difficult to individuate in the experimental data. We study theoretically the impact of simple hydrogen and oxygen defects on the electron transport properties of one-dimensional poly(para-phenylenevinylene) chains through a multiscale technique, starting from classical structural simulations for crystalline films to extensive ab initio calculations within density functional theory for the defects in single crystalline-constrained chains. The most disruptive effect on carrier transport comes from conjugation breaking imposed by the overcoordination of a carbon atom in the vinyl group independently from the chemical nature of the defect. The particular case of the [C=O] (keto-defect) shows in addition unexpected electron-hole separation, suggesting that the experimentally detected photoluminescence bleaching and photoconductivity enhancement could be due to exciton dissociation caused by the 1D characteristics of the defect.
Resumo:
NiCl(2)-4SC(NH(2))(2) (known as DTN) is a spin-1 material with a strong single-ion anisotropy that is regarded as a new candidate for Bose-Einstein condensation (BEC) of spin degrees of freedom. We present a systematic study of the low-energy excitation spectrum of DTN in the field-induced magnetically ordered phase by means of high-field electron spin resonance measurements at temperatures down to 0.45 K. We argue that two gapped modes observed in the experiment can be consistently interpreted within a four-sublattice antiferromagnet model with a finite interaction between two tetragonal subsystems and unbroken axial symmetry. The latter is crucial for the interpretation of the field-induced ordering in DTN in terms of BEC.
Resumo:
The band-edge optical absorption in EuTe is studied in the framework of the 5d conduction band atomic model. Both relaxed antiferromagnetic order, and ferromagnetic order induced by an external magnetic field, were analyzed. For ferromagnetic arrangement, the absorption is characterized by a hugely dichroic doublet of narrow lines. In the antiferromagnetic order, the spectrum is blueshifted, becomes much broader and weaker, and dichroism is suppressed. These results are in excellent qualitative and quantitative agreement with experimental observations on EuTe and EuSe published by us previously [Phys. Rev. B 72, 155337 (2005)]. The possibility of inducing ferromagnetic order by illuminating the material at photon energies resonant with the band gap is also discussed.
Resumo:
The influence of microwave irradiation on dissipative and Hall resistance in high-quality bilayer electron systems is investigated experimentally. We observe a deviation from odd symmetry under magnetic-field reversal in the microwave-induced Hall resistance boolean AND R(xy), whereas the dissipative resistance boolean AND R(xx) obeys even symmetry. Studies of Delta R(xy) as a function of the microwave electric field and polarization exhibit a strong and nontrivial power and polarization dependence. The obtained results are discussed in connection to existing theoretical models of microwave-induced photoconductivity.