930 resultados para Power transmission planning
Resumo:
7.5Gb/s real-time end-to-end optical OFDM (OOFDM) transceivers incorporating variable power loading on each individual subcarrier are demonstrated experimentally, for the first time, using a live-optimized RSOA intensity modulator having a modulation bandwidth as narrow as 1GHz. Colourless real-time 16-QAM-encoded OOFDM signal transmission at 7.5Gb/s over 25km SSMF is achieved across the C-band in simple IMDD systems without in-line optical amplification and dispersion compensation. Copyright © 2010 The authors.
Resumo:
The 7.5-Gb/s real-time end-to-end optical orthogonal frequency-division- multiplexing (OOFDM) transceivers incorporating variable power loading on each individual subcarrier are demonstrated experimentally using a live-optimized reflective semiconductor optical amplifier intensity modulator having a modulation bandwidth as narrow as 1 GHz. Real-time OOFDM signal transmission at 7.5 Gb/s over 25-km standard single-mode fiber is achieved across the $C$-band in simple intensity modulation and direct detection systems without in-line optical amplification and dispersion compensation. © 2006 IEEE.
Resumo:
Power allocation is studied for fixed-rate transmission over block-fading channels with arbitrary continuous fading distributions and perfect transmitter and receiver channel state information. Both short- and long-term power constraints for arbitrary input distributions are considered. Optimal power allocation schemes are shown to be direct applications of previous results in the literature. It is shown that the short- and long-term outage exponents for arbitrary input distributions are related through a simple formula. The formula is useful to predict when the delay-limited capacity is positive. Furthermore, this characterization is useful for the design of efficient coding schemes for this relevant channel model. © 2010 IEEE.
Resumo:
Theoretical investigations have been carried out to analyze and compare the link power budget and power dissipation of non-return-to-zero (NRZ), pulse amplitude modulation-4 (PAM-4), carrierless amplitude and phase modulation-16 (CAP-16) and 16-quadrature amplitude modulation-orthogonal frequency division multiplexing (16-QAM-OFDM) systems for data center interconnect scenarios. It is shown that for multimode fiber (MMF) links, NRZ modulation schemes with electronic equalization offer the best link power budget margins with the least power dissipation for short transmission distances up to 200 m; while OOFDM is the only scheme which can support a distance of 300 m albeit with power dissipation as high as 4 times that of NRZ. For short single mode fiber (SMF) links, all the modulation schemes offer similar link power budget margins for fiber lengths up to 15 km, but NRZ and PAM-4 are preferable due to their system simplicity and low power consumption. For lengths of up to 30 km, CAP-16 and OOFDM are required although the schemes consume 2 and 4 times as much power respectively compared to that of NRZ. OOFDM alone allows link operation up to 35 km distances. © 1983-2012 IEEE.
Resumo:
Wireless power transfer is experimentally demonstrated by transmission between an AC power transmitter and receiver, both realised using thin film technology. The transmitter and receiver thin film coils are chosen to be identical in order to promote resonant coupling. Planar spiral coils are used because of the ease of fabrication and to reduce the metal layer thickness. The energy transfer efficiency as a function of transfer distance is analysed along with a comparison between the theoretical and the experimental results. © 2012 Materials Research Society.
Resumo:
Simulations have investigated single laser 100G Ethernet links enabled by CAP-16 using QAM receivers that not only lower significantly system timing jitter sensitivity but also outperform PAM and standard CAP in terms of power margin. © 2013 OSA.
Resumo:
Simulations have investigated single laser 100G Ethernet links enabled by CAP-16 using QAM receivers that not only lower significantly system timing jitter sensitivity but also outperform PAM and standard CAP in terms of power margin. © 2013 OSA.
Resumo:
The properties of plasmonic very small aperture lasers are shown: these integrate surface plasmon structures with very small aperture lasers. The transmission field can be confined to a spot of subwavelength width in the far field, and according to the finite difference time domain simulation results the focal length of the spot can be modulated using different ring periods. Scanning of the subwavelength gating in the far field has been realized numerically. Such a device can be used with a high-resolution far-field scanning optical microscope.
Resumo:
Light transmission through a single subwavelength slit surrounded by periodic grooves in layered films consisting of Au and dielectric material is analyzed by the finite difference time domain method in two dimensions. The results show that the transmission field can be enhanced by the corrugations on the output plane, which is a supplementary explanation for the extraordinary optical transmission.
Resumo:
An analysis of the enhancement of light transmission through a sub-wavelength aperture by oil- or solid-immersion is presented in this letter. An output power enhancement phenomenon related to the oil-immersion or solid-immersion mechanism is realized experimentally and reported for a very small aperture laser, which is an agreement with simulation analysis. This phenomenon could be useful for future optical data storage, microscopy and lithography.
Resumo:
High output power very-small-aperture laser has been created on 650 nm edge emitting laser diodes. The far-field output power is 0.4 mW at the 25 mA driving current, and the highest output power exceeds 1 mW. The special fabrication process is described and the failure mechanism leading to the short lifetime of the devices is discussed.
Resumo:
In this work, a novel light source of strained InGaAsP/InGaAsP MQW EAM monolithically integrated with DFB laser is fabricated by ultra-low-pressure (22 x 10(2) Pa) selective area growth ( SAG) MOCVD technique. Superior device performances have been obtained, sue h as low threshold current of 19 mA, output light power of about 7 mW, and over 16 dB extinction ratio at 5 V applied voltage when coupled into a single mode fiber. Over 10 GHz 3 dB bandwidth in EAM part is developed with a driving voltage of 3 V. After the chip is packaged into a 7-pin butterfly compact module, 10-Gb/s NRZ transmission experiments are successfully performed in standard fiber. A clearly-open eye diagram is achieved in the module output with over 8.3 dB dynamic extinction ratio. Power penalty less than 1.5 dB has been obtained after transmission through 53.3 km of standard fiber, which demonstrates that high-speed, low chirp EAM/DFB integrated light source can be obtained by ultra-low-pressure (22 x 102 Pa) SAG method.
Resumo:
A group of prototype integrated circuits are presented for a wireless neural recording micro-system. An inductive link was built for transcutaneous wireless power transfer and data transmission. Power and data were transmitted by a pair of coils on a same carrier frequency. The integrated receiver circuitry was composed of a full-wave bridge rectifier, a voltage regulator, a date recovery circuit, a clock recovery circuit and a power detector. The amplifiers were designed with a limited bandwidth for neural signals acquisition. An integrated FM transmitter was used to transmit the extracted neural signals to external equipments. 16.5 mW power and 50 bps - 2.5 Kbps command data can be received over 1 MHz carrier within 10 mm. The total gain of 60 dB was obtained by the preamplifier and a main amplifier at 0.95Hz - 13.41 KHz with 0.215 mW power dissipation. The power consumption of the 100 MHz ASK transmitter is 0.374 mW. All the integrated circuits operated under a 3.3 V power supply except the voltage regulator.
Resumo:
A low-cost low-power single chip WLAN 802.11a transceiver is designed for personal communication terminal and local multimedia data transmission. It has less than 130mA current dissipation, maximal 67dB gain and can be programmed to be 20dB minimal gain. The receiver system noise figure is 6.4dB in hige-gain mode.
Resumo:
This paper reports on the design, fabrication, and performance of an integrated electro-absorptive modulated laser based on butt-joint configuration for 10Gbit/s application. This paper mainly aims at two aspects. One is to improve the optical coupling between the laser and modulator; another is to increase the bandwidth of such devices by reducing the capacitance parameter of the modulator. The integrated devices exhibit high static and dynamic characteristics. Typical threshold current is 15mA,with some value as low as 8mA. Output power at 100mA is more than 10mW. The extinction characteristics,modulation bandwidth, and electrical return loss are measured. 3dB bandwidth more than 10GHz is monitored.