851 resultados para Power and interpersonal relationship
Resumo:
This study identifies and compares competing policy stories of key actors involved in the Ecuadorian education reform under President Rafael Correa from 2007-2015. By revealing these competing policy stories the study generates insights into the political and technical aspects of education reform in a context where state capacity has been eroded by decades of neoliberal policies. Since the elections in 2007, President Correa has focused much of his political effort and capital on reconstituting the state’s authority and capacity to not only formulate but also implement public policies. The concentration of power combined with a capacity building agenda allowed the Correa government to advance an ambitious comprehensive education reform with substantive results in equity and quality. At the same time the concentration of power has undermined a more inclusive and participatory approach which are essential for deepening and sustaining the reform. This study underscores both the limits and importance of state control over education; the inevitable conflicts and complexities associated with education reforms that focus on quality; and the limits and importance of participation in reform. Finally, it examines the analytical benefits of understanding governance, participation and quality as socially constructed concepts that are tied to normative and ideological interests.
Resumo:
As the semiconductor industry struggles to maintain its momentum down the path following the Moore's Law, three dimensional integrated circuit (3D IC) technology has emerged as a promising solution to achieve higher integration density, better performance, and lower power consumption. However, despite its significant improvement in electrical performance, 3D IC presents several serious physical design challenges. In this dissertation, we investigate physical design methodologies for 3D ICs with primary focus on two areas: low power 3D clock tree design, and reliability degradation modeling and management. Clock trees are essential parts for digital system which dissipate a large amount of power due to high capacitive loads. The majority of existing 3D clock tree designs focus on minimizing the total wire length, which produces sub-optimal results for power optimization. In this dissertation, we formulate a 3D clock tree design flow which directly optimizes for clock power. Besides, we also investigate the design methodology for clock gating a 3D clock tree, which uses shutdown gates to selectively turn off unnecessary clock activities. Different from the common assumption in 2D ICs that shutdown gates are cheap thus can be applied at every clock node, shutdown gates in 3D ICs introduce additional control TSVs, which compete with clock TSVs for placement resources. We explore the design methodologies to produce the optimal allocation and placement for clock and control TSVs so that the clock power is minimized. We show that the proposed synthesis flow saves significant clock power while accounting for available TSV placement area. Vertical integration also brings new reliability challenges including TSV's electromigration (EM) and several other reliability loss mechanisms caused by TSV-induced stress. These reliability loss models involve complex inter-dependencies between electrical and thermal conditions, which have not been investigated in the past. In this dissertation we set up an electrical/thermal/reliability co-simulation framework to capture the transient of reliability loss in 3D ICs. We further derive and validate an analytical reliability objective function that can be integrated into the 3D placement design flow. The reliability aware placement scheme enables co-design and co-optimization of both the electrical and reliability property, thus improves both the circuit's performance and its lifetime. Our electrical/reliability co-design scheme avoids unnecessary design cycles or application of ad-hoc fixes that lead to sub-optimal performance. Vertical integration also enables stacking DRAM on top of CPU, providing high bandwidth and short latency. However, non-uniform voltage fluctuation and local thermal hotspot in CPU layers are coupled into DRAM layers, causing a non-uniform bit-cell leakage (thereby bit flip) distribution. We propose a performance-power-resilience simulation framework to capture DRAM soft error in 3D multi-core CPU systems. In addition, a dynamic resilience management (DRM) scheme is investigated, which adaptively tunes CPU's operating points to adjust DRAM's voltage noise and thermal condition during runtime. The DRM uses dynamic frequency scaling to achieve a resilience borrow-in strategy, which effectively enhances DRAM's resilience without sacrificing performance. The proposed physical design methodologies should act as important building blocks for 3D ICs and push 3D ICs toward mainstream acceptance in the near future.
Resumo:
We compare auctioning and grandfathering as allocation mechanisms of emission permits when there is a secondary market with market power and firms have private information on their own abatement technologies. Based on real-life cases such as the EU ETS, we consider a multi-unit, multi-bid uniform auction. At the auction, each firm anticipates its role in the secondary market, either as a leader or a follower. This role affects each firms’ valuation of the permits (which are not common across firms) as well as their bidding strategies and it precludes the auction from generating a cost-effective allocation of permits, as it occurs in simpler auction models. Auctioning tends to be more cost-effective than grandfathering when the firms’ abatement cost functions are sufficiently different from one another, especially if the follower has lower abatement costs than the leader and the dispersion of the marginal costs is large enough.
Resumo:
In this work metal - Microwave Plasma CVD diamond Schottky devices were studied. The current density vs. applied voltage reveals rectification ratios up to 10(4) at \ +/- 2V \. Under illumination an inversion and increase of the rectification is observed. The carrier density is 10(15) cm(-3) and the ideality factors near 1.5. The dark current vs. temperature shows that below 150 K the bulk transport is controlled by a hopping process with a density of defects of 10(16) cm(-3). For higher temperatures an extrinsic ionisation with activation energy of 0.3 eV takes place. The correlation with the polycrystalline nature of the samples is focused.
Resumo:
Objectives: To describe the frequency of feared discrimination in various social situations and of perceived discrimination in clinical settings, as well as to study the relationship between discrimination and depression and anger in women living with human immunodeiciency virus (HIV). Material and methods: The scale of Feared and Perceived Discrimination for Women with HIV (DTP-40-MV), the Beck Depression Inventory (BDI-2), and the Anger Expression scale of State-Trait-anger expression inventory (STaXi-2-aX/eX) were applied to a random sample of 200 women living with HIV. Results: These women feared being discriminated against, perceived discrimination upon the review of medical records, but perceived little discrimination in clinical care. a model with good adjustment to the data showed that the fear of being discriminated against creates a disposition toward perception of discrimination in the clinical settings (latent variable with 2 indicators: review of the medical records and clinical care) and increases cognitive/affective depressive symptoms; higher anger control decreases the anger manifestation; greater discrimination perceived in the clinical settings decreases anger control, which facilitates the expression of anger and slows cognitive/affective depressive symptoms; and these latter symptoms sensitize the perception of discrimination before the clinical records. Conclusion: Feared discrimination is a clinically relevant aspect due to its frequency and effect on depressive symptoms and perception of discrimination before the review of medical records.
Resumo:
In this work metal - Microwave Plasma CVD diamond Schottky devices were studied. The current density vs. applied voltage reveals rectification ratios up to 10(4) at \ +/- 2V \. Under illumination an inversion and increase of the rectification is observed. The carrier density is 10(15) cm(-3) and the ideality factors near 1.5. The dark current vs. temperature shows that below 150 K the bulk transport is controlled by a hopping process with a density of defects of 10(16) cm(-3). For higher temperatures an extrinsic ionisation with activation energy of 0.3 eV takes place. The correlation with the polycrystalline nature of the samples is focused.
Resumo:
Le site Gaudreau est un site perturbé et à occupations multiples situé dans le sud-est du Québec, et présente des occupations datant du Paléoindien Récent jusqu’à la période historique. Les occupations Archaïques du site, noté par la présence de bifaces diagnostiques de l’Archaïque Supérieur et de l’Archaïque Terminal et par des Macrooutils de l’Archaïque Moyen et de l’Archaïque Supérieur, sont le sujet principal de ce mémoire. Puisqu’aucune occupation ne peut être différencié horizontalement ni verticalement, et qu’aucun objet non-diagnostique ne peut être associé avec certitude, seul un échantillon de 32 objets ont été observés. Étant donné la faible taille de l’échantillon analysé, il est fort probable qu’un plus grand nombre de sources de matières premières aient été utilisés durant les occupations de l’Archaïque. Toutefois, un réseau de matières premières lithiques similaire à ceux des sites du Lac Mégantic a été observé, avec une forte représentation de la rhyolite Kineo-Traveller et des cherts Appalachiens. Des cherts des Grands Lacs et le quartzite de Cheshire sont aussi présents. Le mudstone silicifié d’origine locale et le quartz sont par contre faiblement représentés dans l’échantillon, probablement dû à un biais de proximité de source. L’analyse technique de l’échantillon, sans contrôle pour les pratiques techno-économiques, dénote plusieurs récurrences techniques à l’intérieur des unités typologiques, sans toutefois appuyer des différences récurrentes significatives entre les matières premières de régions différentes. À cause de la taille de l’échantillon et du contexte perturbé, la pertinence des fortes similarités entre certains objets est douteuse. La segmentation interpersonnelle des chaînes opératoires ne pouvait être déterminée dans l’échantillon. Cependant, les résultats incitent plutôt à croire que les matières premières devaient circuler sous diverses formes. Il peut être considéré que, en dehors des matières premières locales, les occupants Archaïques du site Gaudreau n’avaient pas d’accès direct aux matières premières exogènes.
Resumo:
Catering to society’s demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research.
Resumo:
Le site Gaudreau est un site perturbé et à occupations multiples situé dans le sud-est du Québec, et présente des occupations datant du Paléoindien Récent jusqu’à la période historique. Les occupations Archaïques du site, noté par la présence de bifaces diagnostiques de l’Archaïque Supérieur et de l’Archaïque Terminal et par des Macrooutils de l’Archaïque Moyen et de l’Archaïque Supérieur, sont le sujet principal de ce mémoire. Puisqu’aucune occupation ne peut être différencié horizontalement ni verticalement, et qu’aucun objet non-diagnostique ne peut être associé avec certitude, seul un échantillon de 32 objets ont été observés. Étant donné la faible taille de l’échantillon analysé, il est fort probable qu’un plus grand nombre de sources de matières premières aient été utilisés durant les occupations de l’Archaïque. Toutefois, un réseau de matières premières lithiques similaire à ceux des sites du Lac Mégantic a été observé, avec une forte représentation de la rhyolite Kineo-Traveller et des cherts Appalachiens. Des cherts des Grands Lacs et le quartzite de Cheshire sont aussi présents. Le mudstone silicifié d’origine locale et le quartz sont par contre faiblement représentés dans l’échantillon, probablement dû à un biais de proximité de source. L’analyse technique de l’échantillon, sans contrôle pour les pratiques techno-économiques, dénote plusieurs récurrences techniques à l’intérieur des unités typologiques, sans toutefois appuyer des différences récurrentes significatives entre les matières premières de régions différentes. À cause de la taille de l’échantillon et du contexte perturbé, la pertinence des fortes similarités entre certains objets est douteuse. La segmentation interpersonnelle des chaînes opératoires ne pouvait être déterminée dans l’échantillon. Cependant, les résultats incitent plutôt à croire que les matières premières devaient circuler sous diverses formes. Il peut être considéré que, en dehors des matières premières locales, les occupants Archaïques du site Gaudreau n’avaient pas d’accès direct aux matières premières exogènes.
Resumo:
Abstract Background: Communication is a basic tool in nursing, a crucial element of care. The quality of the interactions that take place between the nurse and the user/family influence their satisfaction and security felt with the care received. Objectives: To identify the communication skills and interpersonal relationship of nursing students in health care; identify the sociodemographic and academic variables influencing communication skills and interpersonal relationship of nursing students in health care. Methodology: Quantitative study, cross-sectional, descriptive and correlational. The data collection instrument was a questionnaire with questions concerning the socio-demographic and academic characterization; basic skills of interview and clinical communication in health care; learning of clinical communication skills and range of communication skills and interpersonal relationship. The sample consisted of 374 nursing students from two Portuguese schools. Results: The majority were female (80.5%), in the age group of 18-21 years. The students recognize the importance of clinical communication skills and interpersonal relations in nursing practice (82.4%); agreed on the teaching methods of communicational skills (54.3%). Evaluated their training in the area as good (71.7%). Age, semester and school influenced communication skills and interpersonal relationship of students (p <0.5) Conclusion: The results obtained allow us to state that the education / training of nursing student in the relational context is of fundamental importance in building capacity for competent professional practice.
Resumo:
The purpose of this study was to establish the optimal allometric models to predict International Ski Federation’s ski-ranking points for sprint competitions (FISsprint) among elite female cross-country skiers based on maximal oxygen uptake (V̇O2max) and lean mass (LM). Ten elite female cross-country skiers (age: 24.5±2.8 years [mean ± SD]) completed a treadmill roller-skiing test to determine V̇O2max (ie, aerobic power) using the diagonal stride technique, whereas LM (ie, a surrogate indicator of anaerobic capacity) was determined by dual-emission X-ray anthropometry. The subjects’ FISsprint were used as competitive performance measures. Power function modeling was used to predict the skiers’ FISsprint based on V̇O2max, LM, and body mass. The subjects’ test and performance data were as follows: V̇O2max, 4.0±0.3 L min-1; LM, 48.9±4.4 kg; body mass, 64.0±5.2 kg; and FISsprint, 116.4±59.6 points. The following power function models were established for the prediction of FISsprint: 3.91×105 ∙ VO -6.002maxand 6.95×1010 ∙ LM-5.25; these models explained 66% (P=0.0043) and 52% (P=0.019), respectively, of the variance in the FISsprint. Body mass failed to contribute to both models; hence, the models are based on V̇O2max and LM expressed absolutely. The results demonstrate that the physiological variables that reflect aerobic power and anaerobic capacity are important indicators of competitive sprint performance among elite female skiers. To accurately indicate performance capability among elite female skiers, the presented power function models should be used. Skiers whose V̇O2max differs by 1% will differ in their FISsprint by 5.8%, whereas the corresponding 1% difference in LM is related to an FISsprint difference of 5.1%, where both differences are in favor of the skier with higher V̇O2max or LM. It is recommended that coaches use the absolute expression of these variables to monitor skiers’ performance-related training adaptations linked to changes in aerobic power and anaerobic capacity.
Resumo:
This thesis presents advances in integration of photovoltaic (PV) power and energy in practical systems, such as existing power plants in buildings or directly integrated in the public electrical grid. It starts by providing an analyze of the current state of PV power and some of its limitations. The work done in this thesis begins by providing a model to compute mutual shading in large PV plants, and after provides a study of the integration of a PV plant in a biogas power plant. The remainder sections focus on the work done for project PVCROPS, which consisted on the construction and operation of two prototypes composed of a PV system and a novel battery connected to a building and to the public electrical grid. These prototypes were then used to test energy management strategies and validate the suitability of the two advanced batteries (a lithium-ion battery and a vanadium redox ow battery) for households (BIPV) and PV plants. This thesis is divided in 7 chapters: Chapter 1 provides an introduction to explain and develop the main research questions studied for this thesis; Chapter 2 presents the development of a ray-tracing model to compute shading in large PV elds (with or without trackers); Chapter 3 shows the simulation of hybridizing a biogas plant with a PV plant, using biogas as energy storage; Chapters 4 and 5 present the construction, programming, and initial operation of both prototypes (Chapter 4), EMS testing oriented to BIPV systems (Chapter 5). Finally, Chapters 6 provides some future lines of investigation that can follow this thesis, and Chapter 7 shows a synopsis of the main conclusions of this work; Resumo: Avanços na integracão de potência fotovoltaica e producão de energia em sistemas práticos Esta tese apresenta avanços na integração de potência e energia fotovoltaica (PV) em sistemas práticos, tais como centrais existentes ou a rede eléctrica pública. Come ça por analisar o estado corrente do fotovoltaico no mundo e aborda algumas das suas limitações. O trabalho feito para esta tese de doutoramento começou pelo desenvolvimento de um modelo para calcular os sombreamentos que ocorrem em grandes campos fotovoltaicos, e depois apresenta um estudo sobre a integração um sistema fotovoltaico em uma central eléctrica a bióg as. As ultimas secções da tese focam-se no trabalho feito para o projecto PVCROPS, que consistiu na construção e operação de dois demonstratores, cada um formado por um sistema fotovoltaico e bateria conectados a um edíficio e a rede eléctrica pública. Estes protótipos foram posteriormente utilizados para testar estratégias de gestão de energia (EMS) e para validar a operação de duas baterias avançadas (bateria de Iões de Li tio e bateria de Fluxo Redox de Van adio) e a sua utiliza ção para habitações e centrais PV. A tese está dividida em 7 capitulos: O capitulo 1 apresenta uma introdução para explicar e desenvolver as principais questões que foram investigadas nesta tese; O capitulo 2 mostra o desenvolvimento de um modelo baseado em traçados de raios para calcular sombreamentos mútuos em grandes centrais PV (com e sem seguidores); O capitulo 3 mostra a simulação da hibridização de uma central electrica a biogas com uma central PV, e utilizando o biógas como armazenamento de energia. Os capitulos 4 e 5 apresentam a construção, programação e operação inicial dos dois demonstradores (Capitúlo 4), o teste de EMS orientadas para sistemas PV em habitações (Capítulo 5). Finalmente, o capítulo 6 sugere algumas futuras linhas de investigação que poderão seguir esta tese, e o Capítulo 7 faz uma sinopse das principais conclusões deste trabalho.
Resumo:
Sclerolobium paniculatum Vogel is a species that has good potential for reclamation of degraded soils. The aim of the investigation was to evaluate the growth and survival of the species and the influence of rainfall on growth in diameter as a function of different spacings (4 m x 2 m, 4 m x 3 m, and 4 m x 4 m). The results indicate that the temporal analysis (period from November 2007 to August 2013) detected significant differences (p ? 0.05) in height between the 4 m x 2 m and 4 m x 4 m spacings, while no significant difference in diameter was found between the 4 m x 2 m and 4 m x 3 m spacings. However, the statistical differences did not persist when the data was analyzed at seven and half years old. Regarding survival, a significant difference was observed only between the 4 m x 4 m spacing and the others, with superiority to the former. A strong correlation was found between rainfall and the increment in diameter of individuals in the broader spacings (R = 0.80 in the 4 m x 3 m spacing and R = 0.77 in the 4 m x 4 m spacing), while in the denser spacing the correlation was moderate (R = 0.56 in the 4 m x 2 m spacing). Since the spacings adopted did not influence tree growth by the end of the period, the choice will depend on other factors such as survival and costs of implementation and forestry management. Plantations in regions with larger rainfall amplitude may benefit the productivity of the species.
Resumo:
Power electronic circuits are moving towards higher switching frequencies, exploiting the capabilities of novel devices to shrink the dimension of passive components. This trend demands sensors capable enough to operate at such high frequencies. This thesis aims to demonstrate through experimental characterization, the broadband capability of a fully integrated CMOS X-Hall current sensor in current mode interfaced with a transimpedance amplifier (TIA), chip CH09, realized in CMOS technology for power electronics applications such as power converters. The system exploits a common-mode control system to operate the dual supply system, 5-V for the X-Hall probe and 1.2-V for the readout. The developed prototype achieves a maximum acquisition bandwidth of 12 MHz, a power consumption of 11.46 mW, resolution of 39 mArms, a sensitivity of 8 % /T, and a FoM of 569-MHz/A2mW, significantly higher than current state-of-the-art. Further enhancements were proposed to CH09 as a new chip CH100, aiming for accuracy levels prerequisite for a real-time power electronic application. The TIA was optimized for a wider bandwidth of 26.7 MHz with nearly 30% reduction of the integrated input referred noise of 26.69 nArms at the probe-AFE interface in the frequency band of DC-30 MHz, and a 10% improvement in the dynamic range. The expected input range is 5-A. The chip incorporates a dual sensing chain for differential sensing to overcome common mode interferences. A novel offset cancellation technique is proposed that would require switching of polarity of bias currents. Thermal gain drift was improved by a factor of 8 and will be digitally calibrated utilizing a new built-in temperature sensor with a post calibration measurement accuracy greater than 1%. The estimated power consumption of the entire system is 55.6 mW. Both prototypes have been implemented through a 90-nm microelectronic process from STMicroelectronics and occupy a silicon area of 2.4 mm2.