905 resultados para Phosphorus-doped Silicon


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The element silicon (Si) is not considered an essential nutrient for plant function. Nevertheless, Si is absorbed from soil in large amounts that are several fold higher than those of other essential macronutrients in certain plant species. Its beneficial effects have been reported in various situations, especially under biotic and abiotic stress conditions. The most significant effect of Si on plants, besides improving their fitness in nature and increasing agricultural productivity, is the restriction of parasitism. There has been a considerable amount of research showing the positive effect of Si in controlling diseases in important crops. Rice (Oryza sativa), in particular, is affected by the presence of Si, with diseases such as blast, brown spot and sheath blight becoming more severe on rice plants grown in Si-depleted soils. The hypothesis underlying the control of some diseases in both mono- and di-cots by Si has been confined to that of a mechanical barrier resulting from its polymerization in planta. However, some studies show that Si-mediated resistance against pathogens is associated with the accumulation of phenolics and phytoalexins as well as with the activation of some PR-genes. These findings strongly suggest that Si plays an active role in the resistance of some plants to diseases rather than forming a physical barrier that impedes penetration by fungal pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure and Fe(III)-doped TiO2 suspensions were prepared by the sol gel method with the use of titanium isopropoxide (Ti(OPri)4) as precursor material. The properties of doped materials were compared to TiO2 properties based on the characterization by thermal analysis (TG-DTA and DSC), X-ray powder diffractometry and spectroscopy measurements (FTIR). Both undoped and doped TiO2 suspensions were used to coat metallic substrate as a mean to make thin-film electrodes. Thermal treatment of the precursors at 400ºC for 2 h in air resulted in the formation of nanocrystalline anatase TiO2. The thin-film electrodes were tested with respect to their photocatalytic performance for degradation of a textile dye in aqueous solution. The plain TiO2 remains as the best catalyst at the conditions used in this report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A field experiment conducted with the irrigated rice cultivar BRS Formoso, to assess the efficiency of calcinated serpentinite as a silicon source on grain yield was utilized to study its effect on leaf blast severity and tissue sugar levels. The treatments consisted of five rates of calcinated serpentinite (0, 2, 4, 6, 8 Mg.ha-1) incorporated into the soil prior to planting. The leaf blast severity was reduced at the rate of 2.96% per ton of calcinated serpentinite. The total tissue sugar content decreased significantly as the rates of serpentinite applied increased (R² = 0.83). The relationship between the tissue sugar content and leaf blast severity was linear and positive (R² = 0.81). The decrease in leaf blast severity with increased rates of calcinated serpentinite was also linear (R²= 0.96) and can be ascribed to reduced sugar level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is devoted to growth and investigations of Mn-doped InSb and II-IV-As2 semiconductors, including Cd1-xZnxGeAs2:Mn, ZnSiAs2:Mn bulk crystals, ZnSiAs2:Mn/Si heterostructures. Bulk crystals were grown by direct melting of starting components followed by fast cooling. Mn-doped ZnSiAs2/Si heterostructures were grown by vacuum-thermal deposition of ZnAs2 and Mn layers on Si substrates followed by annealing. The compositional and structural properties of samples were investigated by different methods. The samples consist of micro- and nano- sizes clusters of an additional ferromagnetic Mn-X phases (X = Sb or As). Influence of magnetic precipitations on magnetic and electrical properties of the investigated materials was examined. With relatively high Mn concentration the main contribution to magnetization of samples is by MnSb or MnAs clusters. These clusters are responsible for high temperature behavior of magnetization and relatively high Curie temperature: up to 350 K for Mn-doped II-IV-As2 and about 600 K for InMnSb. The low-field magnetic properties of Mn-doped II-IV-As2 semiconductors and ZnSiAs2:Mn/Si heterostructures are connected to the nanosize MnAs particles. Also influence of nanosized MnSb clusters on low-field magnetic properties of InMnSb have been observed. The contribution of paramagnetic phase to magnetization rises at low temperatures or in samples with low Mn concentration. Source of this contribution is not only isolated Mn ions, but also small complexes, mainly dimmers and trimmers formed by Mn ions, substituting cation positions in crystal lattice. Resistivity, magnetoresistance and Hall resistivity properties in bulk Mn-doped II-IV-As2 and InSb crystals was analyzed. The interaction between delocalized holes and 3d shells of the Mn ions together with giant Zeeman splitting near the cluster interface are respond for negative magnetoresistance. Additionally to high temperature critical pointthe low-temperature ferromagnetic transition was observed Anomalous Hall effect was observed in Mn doped samples and analyzed for InMnSb. It was found that MnX clusters influence significantly on magnetic scattering of carriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The benefit promoted by ectomycorrhizal depends on the interaction between symbionts and phosphorus (P) contents. Phosphorus effect on ectomycorrhizal formation and the effectiveness of these in promoting plant growth for fungal pre-selection were assessed under in vitro conditions. For P effect evaluation, Eucalyptus urophylla seedlings inoculated with four Pisolithus sp. isolates and others non-inoculated were grown on substrate containing 0.87, 1.16 and 1.72 mg P per plant. For evaluation of effectiveness and fungal pre-selection, other 30 isolates of Pisolithus sp., Pisolithus microcarpus ITA06 isolate, Amanita muscaria AM16 isolate, Scleroderma areolatum SC129 isolate were studied. D26 isolate promoted the highest plant heights for the three P doses, D51 at the lower dose and D72 at the intermediate dose. P doses did not influenced shoot fresh weight and fungal colonization. In the pre-selection of fungi, 14 isolates of Pisolithus sp., P. microcarpus ITA06 isolate and S. areolatum SC129isolate increased plant height and fresh weight. D82 isolate of Pisolithus sp. had effect singly on plant height while D17 and D58 on fresh weight. Of these, only D15, D17, D58 and ITA06 had typical ectomycorrhizae. The cultivation in vitro has shown adequate for pre-selection of ectomycorrhizal fungi. Colonization and benefits depend on species and isolate. D15, D17 and D58 of Pisolithus sp. and P. microcarpus isolate ITA06 are the most promising for nursery studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT The macaw palm [Acrocomia aculeata (Jacq.) Lood. ex Mart] has been domesticated to subsidize biodiesel production programs in Brazil. However, little is known about the seedling production of this species. This study aimed to evaluate substrate mixtures, limestone and phosphorus rates for substrate amendment and topdressing frequency in macaw palm seedlings. Three trials were conducted in a greenhouse up to six months of nursery cultivation. Trial 1: determination of percent mineral and organic fractions of seven substrate mixtures. Trial 2: evaluation of four limerates for soil amendment versus four phosphorus rates. Trial 3: evaluation of N, K and Mg topdressing frequency. Significant differences were found in the three trials for most of the variables (plant height, leaf number, shoot dry mass, root dry mass, vigor and bulb diameter). The main results obtained were as follow: Trial1 - the best seedling growth was observed in substrates with at least 25% organic matter. Trial2 -lime rates ranging from 0.50 to 1.25 kg associated with 3 to 4 kg of single superphosphate per m3 of substrate provided the best seedling growth. Trial 3 - topdressing fertilization provided better development of seedlings regardless of frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tillgången på traditionella biobränslen är begränsad och därför behöver man ta fram nya, tidigare outnyttjade biobränslen för att möta de uppställda CO2 emissionsmålen av EU och det ständigt ökande energibehovet. Under de senare åren har intresset riktats mot termisk energiutvinning ur olika restfraktioner och avfall. Vid produktion av fordonsbränsle ur biomassa är den fasta restprodukten ofta den största procesströmmen i produktionsanläggningen. En riktig hantering av restprodukterna skulle göra produktionen mera lönsam och mer ekologiskt hållbar. Ett alternativ är att genom förbränning producera elektricitet och/eller värme eftersom dessa restprodukter anses som CO2-neutrala. Målsättningen med den här avhandlingen var att studera förbränningsegenskaperna hos några fasta restprodukter som uppstår vid framställning av förnybara fordonsbränslen. De fyra undersökta materialen är rapskaka, palmkärnskaka, torkad drank och stabiliserat rötslam. I studien används ett stort urval av undersökningsmetoder, från laboratorieskala till fullskalig förbränning, för att identifiera de huvudsakliga utmaningarna förknippade med förbränning av restprodukterna i pannor med fluidiserad bäddteknik. Med hjälp av detaljerad bränslekarakterisering kunde restprodukterna konstateras vara en värdefull källa för värme- och elproduktion. Den kemiska sammansättningen av restprodukterna varierar stort jämfört med mera traditionellt använda biobränslen. En gemensam faktor för alla de studerade restprodukterna är en hög fosforhalt. På grund av de låga fosforkoncentrationerna i de traditionella biobränslena har grundämnet hittills inte ansetts spela någon större roll i askkemin. Experimenten visade nu att fosfor inte mera kan försummas då man studerar kemin i förbränningsprocesser, då allt flera fosforrika bränslen tränger in på energimarknaden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed to study the agronomic performance and capacity of nutrient removal by bermudagrass (Cynodon spp.) and cattail (Typha sp.) when grown in constructed wetlands systems (CWSs) of vertical and horizontal flow, respectively, used in the post-treatment of swine breeding wastewater (ARS). The average yield of dry matter (DM) of bermudagrass in sections of 60-day interval ranged from 14 to 43 t ha-1, while the cultivated cattail produced in a single cut after 200 days of cultivation between 45 and 67 t ha-1 of DM. Bermudagrass extracted up to 17.65 kg ha-1 d-1 of nitrogen, 1.76 kg ha-1 d-1 of phosphorus, 6.67 g ha-1 d-1 of copper and 54.75 g ha-1 d-1 of zinc. Cattail extracted up to 5.10 kg ha-1 d-1 of nitrogen, 1.07 kg ha-1 d-1 of phosphorus, 1.41 g ha-1 d-1 of copper and 16.04 g ha-1 d-1 of zinc. Cattail and bermudagrass were able to remove, respectively, 5.0 and 4.6% of the nitrogen and 11.2 and 5.4% of the phosphorus applied via ARS, being less efficient in extracting N and P when the initial intake of these nutrients is evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to evaluate the leaf concentration of nitrogen and phosphorus correlated to the production of photoassimilates in beans plants (Phaseolus vulgaris L.) under high [CO2] and drought stress. The experiment was conducted in Viçosa (Brazil), during the period from April to July 2009, by using open-top chambers equipped with CO2 injection system. The drought stress was applied, through the irrigation suspension, during the period from flowering to maturation. The experimental design was randomized blocks in split-plot scheme with four replication, where the plots with plants grown in [CO2] of 700 mg L-1 and [CO2] environment of 380 mg L-1 and the subplots with plants with and without drought stress. The results were submitted to ANOVA and Tukey test (p < 0.05). In the plants under high [CO2] with and without drought stress, the photosynthetic rate increased by 59%, while the dry matter presented an increment of 20% in the plants under high [CO2] without drought stress. Reductions in [N] and [P] occurred in plants grown under high [CO2], resulting in greater efficiency in nitrogen use for photosynthesis. The high [CO2] increase only the total dry matter and not the total mass of grains. The drought stress reduces the dry matter and mass of grain, even at high [CO2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work parameters of Mg-doped GaN samples were studied using positron annihilation spectroscopy and analyzed. It is shown that gallium vacancies exist in an unintentionally doped sample. Next, the sample with higher concentration of Mg and low growth temperature contains vacancy clusters. In case of low concentration of Mg the growth temperature does not affect the formation of defects. Analog electronics can be replaced by a modern digital device. While promising a high quantity of benefits, the performance of these digitizers requires thorough adjustment. A 14-bit two channel digitizer has been tested in order to achieve better performance than the one of a traditional analog setup, and the adjustment process is described. It has been shown that the digital device is unable to achieve better energy resolution, but it is quite close to the corresponding attribute of the available analog system, which had been used for measurements in Mg-doped GaN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, the gas sensing properties of porous silicon-based thin-film optical filters are explored. The effects of surface chemistry on the adsorption and desorption of various gases are studied in detail. Special emphasis is placed on investigating thermal carbonization as a stabilization method for optical sensing applications. Moreover, the possibility of utilizing the increased electrical conductivity of thermally carbonized porous silicon for implementing a multiparametric gas sensor, which would enable simultaneous monitoring of electrical and optical parameters, is investigated. In addition, different porous silicon-based optical filter-structures are prepared, and their properties in sensing applications are evaluated and compared. First and foremost, thermal carbonization is established as a viable method to stabilize porous silicon optical filters for chemical sensing applications. Furthermore, a multiparametric sensor, which can be used for increasing selectivity in gas sensing, is also demonstrated. Methods to improve spectral quality in multistopband mesoporous silicon rugate filters are studied, and structural effects to gas sorption kinetics are evaluated. Finally, the stability of thermally carbonized optical filters in basic environments is found to be superior in comparison to other surface chemistries currently available for porous silicon. The results presented in this thesis are of particular interest for developing novel reliable sensing systems based on porous silicon, e.g., label-free optical biosensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the effect of tool wear on surface finish in single-point diamond turning of single crystal silicon. The morphology and topography of the machined surface clearly show the type of cutting edge wear reproduced onto the cutting grooves. Scanning electron microscopy is used in order to correlate the cutting edge damage and microtopography features observed through atomic force microscopy. The possible wear mechanisms affecting tool performance and surface generation during cutting are also discussed. The zero degree rake angle single point diamond tool presented small nicks on the cutting edge. The negative rake angle tools presented more a type of crater wear on the rake face. No wear was detected on flank face of the diamond tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technology that employs genetic modifications brought a significant increase in the utilization of glyphosate. Transgenic soybean has been suffering injury, even though it possesses a resistance mechanism to glyphosate. Currently, there are only a few studies on the dynamics of glyphosate in transgenic soybean planted in soils with different textures interacting with phosphorus concentrations. This study focused on assessing the effects of glyphosate in transgenic soybean plants on different types of soil and at different phosphorus levels. The experimental design was completely randomized, in factorial design: 2 x 6 x 3, that being 2 soil types, 6 doses of glyphosate and 3 levels of phosphorus, and four replications. Plants were cultivated for thirty days in pots with two types of soil, one being clayey (Red-Yellow Latosol) and the other sandy (Quartzarenic Neosol). They received one, two, and three times the maintenance dose of fertilization of phosphorus, corresponding to: 170, 250 and 330 kg of P2O5 ha-1 to QN, and 380, 460 and 540 kg P2O5 ha-1 to RYL, respectively. Glyphosate was applied at six different doses: 0, 1,200, 2,400, 12,000, 60,000 and 120,000 g ha-1 of active ingredient. Plant height, a and b chlorophyll, and shoot were lower for the plants that received lower doses of glyphosate, regardless of the type of soil. Greater availability of phosphorus and lower amount of glyphosate used in Quartzarenic Neosol soil provided for less phytointoxication symptoms in transgenic soybean.