959 resultados para Perturbed Verblunsky coefficients
Resumo:
The effect of radiation on natural convection flow from an isothermal circular cylinder has been investigated numerically in this study. The governing boundary layer equations of motion are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are reduced to convenient boundary layer equations, which are then solved numerically by two distinct efficient methods namely: (i) implicit finite differencemethod or the Keller-Box Method (KBM) and (ii) Straight Forward Finite Difference Method (SFFD). Numerical results are presented by velocity and temperature distribution of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of surface heating parameter and radiation-conduction parameter. Due to the effects of the radiation the skin-friction coefficients as well as the rate of heat transfer increased and consequently the momentum and thermal boundary layer thickness enhanced.
Resumo:
Laminar magnetohydrodynamic (MHD) natural convection flow from an isothermal sphere immersed in a fluid with viscosity proportional to linear function of temperature has been studied. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are reduced to convenient form which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distribution, streamlines and isotherms of the fluid as well as heat transfer characteristics, namely the local skin-friction coefficients and the local heat transfer rate for a wide range of magnetohydrodynamic paramagnet and viscosity-variation parameter.
Resumo:
Background: Caring for family members with dementia can be a long-term, burdensome task resulting in physical and emotional distress and impairment. Research has demonstrated significantly lower levels of selfefficacy among family caregivers of people with dementia (CGs) than caregivers of relatives with non-dementia diseases. Intervention studies have also suggested that the mental and physical health of dementia CGs could be improved through the enhancement of their self-efficacy. However, studies are limited in terms of the influences of caregiver self-efficacy on caregiver behaviour, subjective burden and health-related quality of life. Of particular note is that there are no studies on the applicability of caregiver self-efficacy in the social context of China. Objective: The purpose of this thesis was to undertake theoretical exploration using Bandura’s (1997) self-efficacy theory to 1) revise the Revised Caregiving Self-Efficacy Scale (C-RCSES) (Steffen, McKibbin, Zeiss, Gallagher-Thompson, & Bandura, 2002), and 2) explore determinants of caregiver self-efficacy and the role of caregiver self-efficacy and other conceptual constructs (including CGs’ socio-demographic characteristics, CRs’ impairment and CGs’ social support) in explaining and predicting caregiver behaviour, subjective burden and health-related quality of life among CGs in China. Methodology: Two studies were undertaken: a qualitative elicitation study with 10 CGs; and a cross-sectional survey with 196 CGs. In the first study, semi-structured interviews were conducted to explore caregiver behaviours and corresponding challenges for their performance. The findings of the study assisted in the development of the initial items and domains of the Chinese version of the Revised Caregiving Self-Efficacy Scale (C-RCSES). Following changes to items in the scale, the second study, a cross-sectional survey with 196 CGs was conducted to evaluate the psychometric properties of C-RCSES and to test a hypothesised self-efficacy model of family caregiving adapted from Bandura’s theory (1997). Results: 35 items were generated from the qualitative data. The content validity of the C-RCSES was assessed and ensured in Study One before being used for the cross-sectional survey. Eight items were removed and five subscales (caregiver self-efficacy for gathering information about treatment, symptoms and health care; obtaining support; responding to problematic behaviours; management of household, personal and medical care; and controlling upsetting thoughts about caregiving) were identified after principal component factor analysis on the cross-sectional survey data. The reliability of the scale is acceptable: the Cronbach’s alpha coefficients for the whole scale and for each subscale were all over .80; and the fourweek test-retest reliabilities for the whole scale and for each subscale ranged from .64 to .85. The concurrent, convergent and divergent validity were also acceptable. CGs reported moderate levels of caregiver self-efficacy. Furthermore, the level of self-efficacy for management of household, personal and medical care was relatively high in comparison to those of the other four domains of caregiver self-efficacy. Caregiver self-efficacy was also significantly influenced by CGs’ socio-demographic characteristics and the caregiving external factors (CR impairment and social support that CGs obtained). The level of caregiver behaviour that CGs reported was higher than that reported in other Chinese research. CGs’ socio-demographics significantly influenced caregiver behaviour, whereas caregiver self-efficacy did not influence caregiver behaviour. Regarding the two external factors, CGs who cared for highly impaired relatives reported high levels of caregiver behaviour, but social support did not influence caregiver behaviour. Regarding caregiver subjective burden and health-related quality of life, CGs reported moderate levels of subjective burden, and their level of healthrelated quality of life was significantly lower than that of the general population in China. The findings also indicated that CGs’ subjective burden and health-related quality of life were influenced by all major factors in the hypothesised model, including CGs’ socio-demographics, CRs’ impairment, social support that CGs obtained, caregiver self-efficacy and caregiver behaviour. Of these factors, caregiver self-efficacy and social support significantly improved their subjective burden and health-related quality of life; whereas caregiver behaviour and CRs’ impairment were detrimental to CGs, such as increasing subjective burden and worsening health-related quality of life. Conclusion: While requiring further exploration, the qualitative study was the first qualitative research conducted in China to provide an in-depth understanding of CGs’ caregiving experience, including their major caregiver behaviours and the corresponding challenges. Meanwhile, although the C-RCSES needs further psychometric testing, it is a useful tool for assessing caregiver self-efficacy in Chinese populations. Results of the qualitative and quantitative study provide useful information for future studies regarding the explanatory power of caregiver self-efficacy to caregiver behaviour, subjective burden and health-related quality of life. Additionally, integrated with Bandura’s theory, the findings from the quantitative study also suggested a further study exploring the role of outcome expectations in caregiver behaviour, subjective burden and healthrelated quality of life.
Resumo:
Estimates of the half-life to convergence of prices across a panel of cities are subject to bias from three potential sources: inappropriate cross-sectional aggregation of heterogeneous coefficients, presence of lagged dependent variables in a model with individual fixed effects, and time aggregation of commodity prices. This paper finds no evidence of heterogeneity bias in annual CPI data for 17 U.S. cities from 1918 to 2006, but correcting for the “Nickell bias” and time aggregation bias produces a half-life of 7.5 years, shorter than estimates from previous studies.
Resumo:
A new algorithm for extracting features from images for object recognition is described. The algorithm uses higher order spectra to provide desirable invariance properties, to provide noise immunity, and to incorporate nonlinearity into the feature extraction procedure thereby allowing the use of simple classifiers. An image can be reduced to a set of 1D functions via the Radon transform, or alternatively, the Fourier transform of each 1D projection can be obtained from a radial slice of the 2D Fourier transform of the image according to the Fourier slice theorem. A triple product of Fourier coefficients, referred to as the deterministic bispectrum, is computed for each 1D function and is integrated along radial lines in bifrequency space. Phases of the integrated bispectra are shown to be translation- and scale-invariant. Rotation invariance is achieved by a regrouping of these invariants at a constant radius followed by a second stage of invariant extraction. Rotation invariance is thus converted to translation invariance in the second step. Results using synthetic and actual images show that isolated, compact clusters are formed in feature space. These clusters are linearly separable, indicating that the nonlinearity required in the mapping from the input space to the classification space is incorporated well into the feature extraction stage. The use of higher order spectra results in good noise immunity, as verified with synthetic and real images. Classification of images using the higher order spectra-based algorithm compares favorably to classification using the method of moment invariants
Resumo:
Unusual event detection in crowded scenes remains challenging because of the diversity of events and noise. In this paper, we present a novel approach for unusual event detection via sparse reconstruction of dynamic textures over an overcomplete basis set, with the dynamic texture described by local binary patterns from three orthogonal planes (LBPTOP). The overcomplete basis set is learnt from the training data where only the normal items observed. In the detection process, given a new observation, we compute the sparse coefficients using the Dantzig Selector algorithm which was proposed in the literature of compressed sensing. Then the reconstruction errors are computed, based on which we detect the abnormal items. Our application can be used to detect both local and global abnormal events. We evaluate our algorithm on UCSD Abnormality Datasets for local anomaly detection, which is shown to outperform current state-of-the-art approaches, and we also get promising results for rapid escape detection using the PETS2009 dataset.
Resumo:
In this paper we construct a mathematical model for the genetic regulatory network of the lactose operon. This mathematical model contains transcription and translation of the lactose permease (LacY) and a reporter gene GFP. The probability of transcription of LacY is determined by 14 binding states out of all 50 possible binding states of the lactose operon based on the quasi-steady-state assumption for the binding reactions, while we calculate the probability of transcription for the reporter gene GFP based on 5 binding states out of 19 possible binding states because the binding site O2 is missing for this reporter gene. We have tested different mechanisms for the transport of thio-methylgalactoside (TMG) and the effect of different Hill coefficients on the simulated LacY expression levels. Using this mathematical model we have realized one of the experimental results with different LacY concentrations, which are induced by different concentrations of TMG.
Resumo:
We consider a robust filtering problem for uncertain discrete-time, homogeneous, first-order, finite-state hidden Markov models (HMMs). The class of uncertain HMMs considered is described by a conditional relative entropy constraint on measures perturbed from a nominal regular conditional probability distribution given the previous posterior state distribution and the latest measurement. Under this class of perturbations, a robust infinite horizon filtering problem is first formulated as a constrained optimization problem before being transformed via variational results into an unconstrained optimization problem; the latter can be elegantly solved using a risk-sensitive information-state based filtering.
Resumo:
Changes in peripheral aberrations, particularly higher-order aberrations, as a function of accommodation have received little attention. Wavefront aberrations were measured for the right eyes of 9 young adult emmetropes at 38 field positions in the central 42 x 32 degrees of the visual field. Subjects accommodated monocularly to targets at vergences of either 0.3 or 4.0 D. Wavefront data for a 5 mm diameter pupil were analyzed either in terms of the vector components of refraction or Zernike coefficients and total RMS wavefront aberrations. Relative peripheral refractive error (RPRE) was myopic at both accommodation demands and showed only a slight, not statistically significant, hypermetropic shift in the vertical meridian with the higher accommodation demand. There was little change in the astigmatic components of refraction or the higher-order Zernike coefficients, apart from fourth-order spherical aberration which became more negative (by 0.10 µm) at all field locations. Although it has been suggested that nearwork and the state of peripheral refraction may play some role in myopia development, for most of our adult emmetropes any changes with accommodation in RPRE and aberration were small. Hence it seems unlikely that such changes can be of importance to late-onset myopisation.
Resumo:
We modified a commercial Hartmann-Shack aberrometer and used it to measure ocular aberrations across the central 42º horizontal x 32º vertical visual fields of five young emmetropic subjects. Some Zernike aberration coefficients show coefficient field distributions that were similar to the field dependence predicted by Seidel theory (astigmatism, oblique astigmatism, horizontal coma, vertical coma), but defocus did not demonstrate such similarity.
Resumo:
The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of seven published/submitted papers, of which one has been published, three accepted for publication and the other three are under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of proposing strategies for the performance control of Distributed Generation (DG) system with digital estimation of power system signal parameters. Distributed Generation (DG) has been recently introduced as a new concept for the generation of power and the enhancement of conventionally produced electricity. Global warming issue calls for renewable energy resources in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cell and micro turbine will gain substantial momentum in the near future. Technically, DG can be a viable solution for the issue of the integration of renewable or non-conventional energy resources. Basically, DG sources can be connected to local power system through power electronic devices, i.e. inverters or ac-ac converters. The interconnection of DG systems to power system as a compensator or a power source with high quality performance is the main aim of this study. Source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, distortion at the point of common coupling in weak source cases, source current power factor, and synchronism of generated currents or voltages are the issues of concern. The interconnection of DG sources shall be carried out by using power electronics switching devices that inject high frequency components rather than the desired current. Also, noise and harmonic distortions can impact the performance of the control strategies. To be able to mitigate the negative effect of high frequency and harmonic as well as noise distortion to achieve satisfactory performance of DG systems, new methods of signal parameter estimation have been proposed in this thesis. These methods are based on processing the digital samples of power system signals. Thus, proposing advanced techniques for the digital estimation of signal parameters and methods for the generation of DG reference currents using the estimates provided is the targeted scope of this thesis. An introduction to this research – including a description of the research problem, the literature review and an account of the research progress linking the research papers – is presented in Chapter 1. One of the main parameters of a power system signal is its frequency. Phasor Measurement (PM) technique is one of the renowned and advanced techniques used for the estimation of power system frequency. Chapter 2 focuses on an in-depth analysis conducted on the PM technique to reveal its strengths and drawbacks. The analysis will be followed by a new technique proposed to enhance the speed of the PM technique while the input signal is free of even-order harmonics. The other techniques proposed in this thesis as the novel ones will be compared with the PM technique comprehensively studied in Chapter 2. An algorithm based on the concept of Kalman filtering is proposed in Chapter 3. The algorithm is intended to estimate signal parameters like amplitude, frequency and phase angle in the online mode. The Kalman filter is modified to operate on the output signal of a Finite Impulse Response (FIR) filter designed by a plain summation. The frequency estimation unit is independent from the Kalman filter and uses the samples refined by the FIR filter. The frequency estimated is given to the Kalman filter to be used in building the transition matrices. The initial settings for the modified Kalman filter are obtained through a trial and error exercise. Another algorithm again based on the concept of Kalman filtering is proposed in Chapter 4 for the estimation of signal parameters. The Kalman filter is also modified to operate on the output signal of the same FIR filter explained above. Nevertheless, the frequency estimation unit, unlike the one proposed in Chapter 3, is not segregated and it interacts with the Kalman filter. The frequency estimated is given to the Kalman filter and other parameters such as the amplitudes and phase angles estimated by the Kalman filter is taken to the frequency estimation unit. Chapter 5 proposes another algorithm based on the concept of Kalman filtering. This time, the state parameters are obtained through matrix arrangements where the noise level is reduced on the sample vector. The purified state vector is used to obtain a new measurement vector for a basic Kalman filter applied. The Kalman filter used has similar structure to a basic Kalman filter except the initial settings are computed through an extensive math-work with regards to the matrix arrangement utilized. Chapter 6 proposes another algorithm based on the concept of Kalman filtering similar to that of Chapter 3. However, this time the initial settings required for the better performance of the modified Kalman filter are calculated instead of being guessed by trial and error exercises. The simulations results for the parameters of signal estimated are enhanced due to the correct settings applied. Moreover, an enhanced Least Error Square (LES) technique is proposed to take on the estimation when a critical transient is detected in the input signal. In fact, some large, sudden changes in the parameters of the signal at these critical transients are not very well tracked by Kalman filtering. However, the proposed LES technique is found to be much faster in tracking these changes. Therefore, an appropriate combination of the LES and modified Kalman filtering is proposed in Chapter 6. Also, this time the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 7 proposes the other algorithm based on the concept of Kalman filtering similar to those of Chapter 3 and 6. However, this time an optimal digital filter is designed instead of the simple summation FIR filter. New initial settings for the modified Kalman filter are calculated based on the coefficients of the digital filter applied. Also, the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 8 uses the estimation algorithm proposed in Chapter 7 for the interconnection scheme of a DG to power network. Robust estimates of the signal amplitudes and phase angles obtained by the estimation approach are used in the reference generation of the compensation scheme. Several simulation tests provided in this chapter show that the proposed scheme can very well handle the source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, and synchronism of generated currents or voltages. The purposed compensation scheme also prevents distortion in voltage at the point of common coupling in weak source cases, balances the source currents, and makes the supply side power factor a desired value.
Resumo:
Barreto-Lynn-Scott (BLS) curves are a stand-out candidate for implementing high-security pairings. This paper shows that particular choices of the pairing-friendly search parameter give rise to four subfami- lies of BLS curves, all of which offer highly efficient and implementation- friendly pairing instantiations. Curves from these particular subfamilies are defined over prime fields that support very efficient towering options for the full extension field. The coefficients for a specific curve and its correct twist are automat-ically determined without any computational effort. The choice of an extremely sparse search parameter is immediately reflected by a highly efficient optimal ate Miller loop and final exponentiation. As a resource for implementors, we give a list with examples of implementation-friendly BLS curves through several high-security levels.
Resumo:
Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.
Resumo:
This paper describes the formulation for the free vibration of joined conical-cylindrical shells with uniform thickness using the transfer of influence coefficient for identification of structural characteristics. These characteristics are importance for structural health monitoring to develop model. This method was developed based on successive transmission of dynamic influence coefficients, which were defined as the relationships between the displacement and the force vectors at arbitrary nodal circles of the system. The two edges of the shell having arbitrary boundary conditions are supported by several elastic springs with meridional/axial, circumferential, radial and rotational stiffness, respectively. The governing equations of vibration of a conical shell, including a cylindrical shell, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-cylindrical shells. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of previous researchers.
Resumo:
Purpose: Investigations of foveal aberrations assume circular pupils. However, the pupil becomes increasingly elliptical with increase in visual field eccentricity. We address this and other issues concerning peripheral aberration specification. Methods: One approach uses an elliptical pupil similar to the actual pupil shape, stretched along its minor axis to become a circle so that Zernike circular aberration polynomials may be used. Another approach uses a circular pupil whose diameter matches either the larger or smaller dimension of the elliptical pupil. Pictorial presentation of aberrations, influence of wavelength on aberrations, sign differences between aberrations for fellow eyes, and referencing position to either the visual field or the retina are considered. Results: Examples show differences between the two approaches. Each has its advantages and disadvantages, but there are ways to compensate for most disadvantages. Two representations of data are pupil aberration maps at each position in the visual field and maps showing the variation in individual aberration coefficients across the field. Conclusions: Based on simplicity of use, adequacy of approximation, possible departures of off-axis pupils from ellipticity, and ease of understanding by clinicians, the circular pupil approach is preferable to the stretched elliptical approach for studies involving field angles up to 30 deg.