632 resultados para Penalty kick
Resumo:
Black hole's response to external perturbations will carry significant information about these exotic objects. Its response, shortly after the initial `kick', is known to be ruled by the damped oscillation of the perturbating eld, called quasinormal modes(QNMs), followed by the tails of decay and is the characteristic of the background black hole spacetime. In the last three decades, several shortcomings came out in the Einstein's General Theory of Relativity(GTR). Such issues come, especially, from observational cosmology and quantum eld theory. In the rst case, for example, the observed accelerated expansion of the universe and the hypothesized mysterious dark energy still lack a satisfactory explanation. Secondly, GTR is a classical theory which does not work as a fundamental theory, when one wants to achieve a full quantum description of gravity. Due to these facts modi cation to GTR or alternative theories for gravity have been considered. Two potential approaches towards these problems are the quintessence model for dark energy and Ho rava-Lifshitz(HL) gravity. Quintessence is a dynamical model of dark energy which is often realized by scalar eld mechanism. HL gravity is the recently proposed theory of gravity, which is renormalizable in power counting arguments. The two models are considered as a potential candidate in explaining these issues.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Structural Health Monitoring (SHM) is an emerging area of research associated to improvement of maintainability and the safety of aerospace, civil and mechanical infrastructures by means of monitoring and damage detection. Guided wave structural testing method is an approach for health monitoring of plate-like structures using smart material piezoelectric transducers. Among many kinds of transducers, the ones that have beam steering feature can perform more accurate surface interrogation. A frequency steerable acoustic transducer (FSATs) is capable of beam steering by varying the input frequency and consequently can detect and localize damage in structures. Guided wave inspection is typically performed through phased arrays which feature a large number of piezoelectric transducers, complexity and limitations. To overcome the weight penalty, the complex circuity and maintenance concern associated with wiring a large number of transducers, new FSATs are proposed that present inherent directional capabilities when generating and sensing elastic waves. The first generation of Spiral FSAT has two main limitations. First, waves are excited or sensed in one direction and in the opposite one (180 ̊ ambiguity) and second, just a relatively rude approximation of the desired directivity has been attained. Second generation of Spiral FSAT is proposed to overcome the first generation limitations. The importance of simulation tools becomes higher when a new idea is proposed and starts to be developed. The shaped transducer concept, especially the second generation of spiral FSAT is a novel idea in guided waves based of Structural Health Monitoring systems, hence finding a simulation tool is a necessity to develop various design aspects of this innovative transducer. In this work, the numerical simulation of the 1st and 2nd generations of Spiral FSAT has been conducted to prove the directional capability of excited guided waves through a plate-like structure.
Resumo:
There is a rich history of social science research centering on racial inequalities that continue to be observed across various markets (e.g., labor, housing, and credit markets) and social milieus. Existing research on racial discrimination in consumer markets, however, is relatively scarce and that which has been done has disproportionately focused on consumers as the victims of race-based mistreatment. As such, we know relatively little about how consumers contribute to inequalities in their roles as perpetrators of racial discrimination. In response, in this paper we elaborate on a line of research that is only in its’ infancy stages of development and yet is ripe with opportunities to advance the literature on consumer racial discrimination and racial earnings inequities among tip dependent employees in the United States. Specifically, we analyze data derived from a large exit survey of restaurant consumers (n=378) in an attempt to replicate, extend, and further explore the recently documented effect of service providers’ race on restaurant consumers’ tipping decisions. Our results indicate that both White and Black restaurant customers discriminate against Black servers by tipping them less than their White coworkers. Importantly, we find no evidence that this Black tip penalty is the result of interracial differences in service skills possessed by Black and White servers. We conclude by delineating directions for future research in this neglected but salient area study.
Resumo:
When a court imposes a fine or forfeiture for a violation of state law, or city or county ordinance, except an ordinance regulating the parking of motor vehicles, the court or the clerk of the district court shall assess an additional penalty in the form of a criminal penalty surcharge equal to thirty-five percent of the fine or forfeiture imposed.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The challenge of detecting a change in the distribution of data is a sequential decision problem that is relevant to many engineering solutions, including quality control and machine and process monitoring. This dissertation develops techniques for exact solution of change-detection problems with discrete time and discrete observations. Change-detection problems are classified as Bayes or minimax based on the availability of information on the change-time distribution. A Bayes optimal solution uses prior information about the distribution of the change time to minimize the expected cost, whereas a minimax optimal solution minimizes the cost under the worst-case change-time distribution. Both types of problems are addressed. The most important result of the dissertation is the development of a polynomial-time algorithm for the solution of important classes of Markov Bayes change-detection problems. Existing techniques for epsilon-exact solution of partially observable Markov decision processes have complexity exponential in the number of observation symbols. A new algorithm, called constellation induction, exploits the concavity and Lipschitz continuity of the value function, and has complexity polynomial in the number of observation symbols. It is shown that change-detection problems with a geometric change-time distribution and identically- and independently-distributed observations before and after the change are solvable in polynomial time. Also, change-detection problems on hidden Markov models with a fixed number of recurrent states are solvable in polynomial time. A detailed implementation and analysis of the constellation-induction algorithm are provided. Exact solution methods are also established for several types of minimax change-detection problems. Finite-horizon problems with arbitrary observation distributions are modeled as extensive-form games and solved using linear programs. Infinite-horizon problems with linear penalty for detection delay and identically- and independently-distributed observations can be solved in polynomial time via epsilon-optimal parameterization of a cumulative-sum procedure. Finally, the properties of policies for change-detection problems are described and analyzed. Simple classes of formal languages are shown to be sufficient for epsilon-exact solution of change-detection problems, and methods for finding minimally sized policy representations are described.
Resumo:
This chapter discusses the historical development, current practice and future prospects of the self-archiving of research papers in open-access repositories (so-called 'e-print archives'). It describes how the development of interoperable e-print repositories in a number of subject communities has shown that self-archiving can benefit academic researchers (and potentially others) by enabling quick and easy access to the research literature and therefore maximising the impact potential of papers. Realising that the possible benefits are high and the technical entry barriers low, many organisations such as universities have recently tried to encourage widespread self-archiving by setting up institutional repositories. However, major barriers to self-archiving remain - most of them cultural and managerial. There are concerns about quality control, intellectual property rights, disturbing the publishing status quo, and workload. Ways in which these issues are currently being addressed are discussed in this chapter. A number of self-archiving initiatives in different countries have been set up to address the concerns and to kick-start e-print repository use. However, issues remain which require further investigation; those discussed in this chapter include discipline differences, definitions of 'publication', versioning problems, digital preservation, costing and funding models, and metadata standards. The ways in which these issues are resolved will be important in determining the future of self-archiving. Possible futures are discussed with particular reference to journal publishing and quality control. If widely adopted, self-archiving might come to assume a central place in the scholarly communication process, but a great deal of restructuring of the process needs to take place before this potential can be realised.
Resumo:
We develop the a posteriori error estimation of interior penalty discontinuous Galerkin discretizations for H(curl)-elliptic problems that arise in eddy current models. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The proposed a posteriori error estimator is validated by numerical experiments, illustrating its reliability and efficiency for a range of test problems.
Resumo:
For a robot be autonomous and mobile, it requires being attached with a set of sensors that helps it to have a better perception of the surrounding world, to manage to localize itself and the surrounding objects. CAMBADA is the robotic soccer team of the IRIS research group, from IEETA, University of Aveiro, that competes in the Middle-Size League of RoboCup. In competition, in order to win, the main objective of the game it's to score more goals than the conceded, so not conceding goals, and score as much as possible it's desirable, thus, this thesis focus on adapt an agent with a better localization capacity in defensive and offensive moments. It was introduced a laser range finder to the CAMBADA robots, making them capable of detecting their own and the opponent goal, and to detect the opponents in specific game situations. With the new information and adapting the Goalie and Penalty behaviors, the CAMBADA goalkeeper is now able to detect and track its own goal and the CAMBADA striker has a better performance in a penalty situation. The developed work was incorporated within the competition software of the robots, which allows the presentation, in this thesis, of the experimental results obtained with physical robots on the laboratory field.
Resumo:
Relatório de Estágio apresentado para a obtenção do grau de Mestre em Desporto com especialização em Treino Desportivo – Futebol
Resumo:
We develop the a-posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finite element methods for a class of second-order quasilinear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh-dependent) energy norm. The bounds are explicit in the local mesh size and the local degree of the approximating polynomial. The performance of the proposed estimators within an automatic hp-adaptive refinement procedure is studied through numerical experiments.
Resumo:
In this paper we consider the a posteriori and a priori error analysis of discontinuous Galerkin interior penalty methods for second-order partial differential equations with nonnegative characteristic form on anisotropically refined computational meshes. In particular, we discuss the question of error estimation for linear target functionals, such as the outflow flux and the local average of the solution. Based on our a posteriori error bound we design and implement the corresponding adaptive algorithm to ensure reliable and efficient control of the error in the prescribed functional to within a given tolerance. This involves exploiting both local isotropic and anisotropic mesh refinement. The theoretical results are illustrated by a series of numerical experiments.