633 resultados para Pedestrian malls
Resumo:
The theory of planned behaviour (TPB) has been used successfully in the past to account for pedestrians' intentions to cross the road in risky situations. However, accident statistics show age and gender differences in the likelihood of adult pedestrian accidents. This study extends earlier work by examining the relative importance of the model components as predictors of intention to cross for four different adult age groups, men, women, drivers and nondrivers. The groups did not differ in the extent to which they differentiated between two situations of varying perceived risk. The model fit was good, but accounted for less of the variance in intention for the youngest group (17-24) than for other age groups. Differences between the age groups in intention to cross seemed to be due to differences in perceived value of crossing rather than differences in perceived risk. Women were less likely to intend to cross than men and perceived more risk, and there were important age, gender and driver status differences in the importance of the TPB variables as predictors of intention. A key implication of these findings is that road safety interventions need to be designed differently for different groups. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Adult pedestrian accident data has demonstrated that the risk of being killed or seriously injured varies with age and gender. A range of factors affecting road crossing choices of 218 adults aged 17-90+ were examined in a simulation study using filmed real traffic. With increasing age, women were shown to make more unsafe crossing decisions, to leave small safety margins and to become poorer at estimating their walking speed. However, the age effects on all of these were ameliorated by driving experience. Men differed from women in that age was not a major factor in predicting unsafe crossing decisions. Rather, reduced mobility was the key factor, leading them to make more unsafe crossings and delay longer in leaving the kerb. For men, driving experience did not predict unsafe road crossing decisions. Although male drivers were more likely to look both ways before crossing than male non-drivers, the impact of being a driver had a negative effect in terms of smaller safety margins and delay in leaving the kerb. The implications of the different predictor variables for men and women for unsafe road crossing are discussed and possible reasons for the differences explored.
Resumo:
The recent history of small shop and independent retailing has been one of decline. The most desirable form of assistance is the provision of information which will increase the efficiency model of marketing mix effeciveness which may be applied in small scale retailing. A further aim is to enhance theoretical development in the marketing field. Recent changes in retailing have affected location, product range, pricing and promotion practices. Although a large number of variables representing aspects of the marketing mix may be identified, it is not possible, on the basis of currently available information, to quantify or rank them according to their effect on sales performance. In designing a suitable study a major issue is that of access to a suitable representative sample of small retailers. The publish nature of the retail activities involved facilitates the use of a novel observation approach to data collection. A cross-sectional survey research design was used focussing on a clustered random sample of greengrocers and gent's fashion outfitters in the West Midlands. Linear multiple regression was the main analytical technique. Powerful regression models were evolved for both types of retailing. For greengrocers the major influences on trade are pedestrian traffic and shelf display space. For gent's outfitters they are centrality-to-other shopping, advertising and shelf display space. The models may be utilised by retailers to determine the relative strength of marketing mix variables. The level of precision is not sufficient to permit cost benefit analysis. Comparison of the findings for the two distinct kinds of business studied suggests an overall model of marketing mix effectiveness might be based on frequency of purchase, homogeneity of the shopping environment, elasticity of demand and bulk characteristics of the good sold by a shop.
Resumo:
The objectives are to examine rural road accident data in order to develop a method by which high accident rate locations and accident causes can be identified, and also to develop proposals for improvements at such locations and to identify measures which will improve road safety throughout the country. The problem of road safety in Iran is an important issue, because of the tragic and unnecessary loss of life, and the enormous cost of accidents in the country. The resources available to deal with the problems are limited and must be allocated on priority basis. This study represents an initial effort to identify the extent of the problem in order to take remedial measures. A study was made of all the available road accident data collected by agencies related to road safety in Iran, and the major organisations responsible for road safety development were visited. The Vice Minister of Roads and Transportation selected for this study a 280 Km rural road in South West Iran. Mainly because of the lack of suitable maps and plans of the roads, it was not possible to accurately identify the location of accidents. Accident scene data was subsequently collected by the highway police and personally by the author. The data for the study road was then analysed to identify 'high accident rate' locations, and also to determine, as far as was possible, the reasons for the accidents. The study suggests specific improvements for each of the high accident rate locations examined (eg. the building of dual carriageways with central guard rails to reduce the risk of collision with oncoming vehicles, pedestrian facilities to allow pedestrians to cross dangerous roadsl]. In addition recommendations are made to guide and assist the major organisations responsible for road safety in Iran. These recommendations are: (al for improving accident data collection and storage (bl for subsequent analysis for taking remedial measures with a view to accident prevention
Resumo:
Given evidence of effects of mobile phone use on driving, and also legislation, many careful drivers refrain from answering their phones when driving. However, the distracting influence of a call on driving, even in the context of not answering, has not been examined. Furthermore, given that not answering may be contrary to an individual’s normal habits, this study examined whether distraction caused by the ignored call varies according to normal intention to answer whilst driving. That is, determining whether the effect is more than a simple matter of noise distraction. Participants were 27 young drivers (18-29 years), all regular mobile users. A Theory of Planned Behaviour questionnaire examined predictors of intention to refrain from answering calls whilst driving. Participants provided their mobile phone number and were instructed not to answer their phone if it were to ring during a driving simulation. The simulation scenario had seven hazards (e.g. car pulling out, pedestrian crossing) with three being immediately preceded by a call. Infractions (e.g. pedestrian collisions, vehicle collisions, speed exceedances) were significantly greater when distracted by call tones than with no distraction. Lower intention to ignore calls whilst driving correlated with a larger effect of distraction, as was feeling unable to control whether one answered whilst driving (Perceived Behavioural Control). The study suggests that even an ignored call can cause significantly increased infractions in simulator driving, with pedestrian collisions and speed exceedances being striking examples. Results are discussed in relation to cognitive demands of inhibiting normal behaviour and to drivers being advised to switch phones off whilst driving.
Resumo:
The aims of this thesis were to investigate the neuropsychological, neurophysiological, and cognitive contributors to mobility changes with increasing age. In a series of studies with adults aged 45-88 years, unsafe pedestrian behaviour and falls were investigated in relation to i) cognitive functions (including response time variability, executive function, and visual attention tests), ii) mobility assessments (including gait and balance and using motion capture cameras), iii) motor initiation and pedestrian road crossing behavior (using a simulated pedestrian road scene), iv) neuronal and functional brain changes (using a computer based crossing task with magnetoencephalography), and v) quality of life questionnaires (including fear of falling and restricted range of travel). Older adults are more likely to be fatally injured at the far-side of the road compared to the near-side of the road, however, the underlying mobility and cognitive processes related to lane-specific (i.e. near-side or far-side) pedestrian crossing errors in older adults is currently unknown. The first study explored cognitive, motor initiation, and mobility predictors of unsafe pedestrian crossing behaviours. The purpose of the first study (Chapter 2) was to determine whether collisions at the near-side and far-side would be differentially predicted by mobility indices (such as walking speed and postural sway), motor initiation, and cognitive function (including spatial planning, visual attention, and within participant variability) with increasing age. The results suggest that near-side unsafe pedestrian crossing errors are related to processing speed, whereas far-side errors are related to spatial planning difficulties. Both near-side and far-side crossing errors were related to walking speed and motor initiation measures (specifically motor initiation variability). The salient mobility predictors of unsafe pedestrian crossings determined in the above study were examined in Chapter 3 in conjunction with the presence of a history of falls. The purpose of this study was to determine the extent to which walking speed (indicated as a salient predictor of unsafe crossings and start-up delay in Chapter 2), and previous falls can be predicted and explained by age-related changes in mobility and cognitive function changes (specifically within participant variability and spatial ability). 53.2% of walking speed variance was found to be predicted by self-rated mobility score, sit-to-stand time, motor initiation, and within participant variability. Although a significant model was not found to predict fall history variance, postural sway and attentional set shifting ability was found to be strongly related to the occurrence of falls within the last year. Next in Chapter 4, unsafe pedestrian crossing behaviour and pedestrian predictors (both mobility and cognitive measures) from Chapter 2 were explored in terms of increasing hemispheric laterality of attentional functions and inter-hemispheric oscillatory beta power changes associated with increasing age. Elevated beta (15-35 Hz) power in the motor cortex prior to movement, and reduced beta power post-movement has been linked to age-related changes in mobility. In addition, increasing recruitment of both hemispheres has been shown to occur and be beneficial to perform similarly to younger adults in cognitive tasks (Cabeza, Anderson, Locantore, & McIntosh, 2002). It has been hypothesised that changes in hemispheric neural beta power may explain the presence of more pedestrian errors at the farside of the road in older adults. The purpose of the study was to determine whether changes in age-related cortical oscillatory beta power and hemispheric laterality are linked to unsafe pedestrian behaviour in older adults. Results indicated that pedestrian errors at the near-side are linked to hemispheric bilateralisation, and neural overcompensation post-movement, 4 whereas far-side unsafe errors are linked to not employing neural compensation methods (hemispheric bilateralisation). Finally, in Chapter 5, fear of falling, life space mobility, and quality of life in old age were examined to determine their relationships with cognition, mobility (including fall history and pedestrian behaviour), and motor initiation. In addition to death and injury, mobility decline (such as pedestrian errors in Chapter 2, and falls in Chapter 3) and cognition can negatively affect quality of life and result in activity avoidance. Further, number of falls in Chapter 3 was not significantly linked to mobility and cognition alone, and may be further explained by a fear of falling. The objective of the above study (Study 2, Chapter 3) was to determine the role of mobility and cognition on fear of falling and life space mobility, and the impact on quality of life measures. Results indicated that missing safe pedestrian crossing gaps (potentially indicating crossing anxiety) and mobility decline were consistent predictors of fear of falling, reduced life space mobility, and quality of life variance. Social community (total number of close family and friends) was also linked to life space mobility and quality of life. Lower cognitive functions (particularly processing speed and reaction time) were found to predict variance in fear of falling and quality of life in old age. Overall, the findings indicated that mobility decline (particularly walking speed or walking difficulty), processing speed, and intra-individual variability in attention (including motor initiation variability) are salient predictors of participant safety (mainly pedestrian crossing errors) and wellbeing with increasing age. More research is required to produce a significant model to explain the number of falls.
Resumo:
The Republic of South Africa since the 1948 inception of Apartheid policies has experienced economic problems resulting from spatially dispersed growth. The election of President Mandela in 1994, however, eliminated the last forms of Apartheid as well as its discriminatory spatial, social, and economic policies, specially toward black Africans. In Cape Town, South Africa, several initiatives to restructure and to economically revitalize blighted and abandoned township communities, like Langa, have been instituted. One element of this strategy is the development of activity streets. The main questions asked in this study are whether activity streets are a feasible solution to the local economic problems left by the apartheid system and whether activity streets represent an economically sustainable approach to development. An analysis of a proposed activity street in Langa and its potential to generate jobs is undertaken. An Employment Generation Model used in this study shows that many of the businesses rely on the local purchasing power of the residents. Since the economic activities are mostly service oriented, a combination of manufacturing industries and institutionally implemented strategies within the township will have to be developed in order to generate sustainable employment. The result seem to indicate that, in Langa, the activity street depend very much on an increase in sales, pedestrian and vehicular traffic flow. ^
Resumo:
This thesis explores the role of public space as an integral part of residential design to promote a sense of community, where neighbors can congregate and children can play in safety. ^ Through research and analysis of successful public spaces, I evaluated relationships between dwellings and public spaces that offer progressive levels of privacy, and between indoor and outdoor spaces. Further research of published studies on child development, human behavior and relationships with nature identified a human preference for natural environments, a need for adequate recreation space for children's development and the potential of open spaces to build a strong sense of community. ^ My project develops multiple transitional spaces between the street and the interior of dwellings that provide varying degrees of privacy closely related to the community's green spaces. The result is a community-oriented pedestrian environment that encourages family and community values and contributes to the healthy living of its residents without depriving them of their privacy. ^
Resumo:
During the past three decades, the use of roundabouts has increased throughout the world due to their greater benefits in comparison with intersections controlled by traditional means. Roundabouts are often chosen because they are widely associated with low accident rates, lower construction and operating costs, and reasonable capacities and delay. ^ In the planning and design of roundabouts, special attention should be given to the movement of pedestrians and bicycles. As a result, there are several guidelines for the design of pedestrian and bicycle treatments at roundabouts that increase the safety of both pedestrians and bicyclists at existing and proposed roundabout locations. Different design guidelines have differing criteria for handling pedestrians and bicyclists at roundabout locations. Although all of the investigated guidelines provide better safety (depending on the traffic conditions at a specific location), their effects on the performance of the roundabout have not been examined yet. ^ Existing roundabout analysis software packages provide estimates of capacity and performance characteristics. This includes characteristics such as delay, queue lengths, stop rates, effects of heavy vehicles, crash frequencies, and geometric delays, as well as fuel consumption, pollutant emissions and operating costs for roundabouts. None of these software packages, however, are capable of determining the effects of various pedestrian crossing locations, nor the effect of different bicycle treatments on the performance of roundabouts. ^ The objective of this research is to develop simulation models capable of determining the effect of various pedestrian and bicycle treatments at single-lane roundabouts. To achieve this, four models were developed. The first model simulates a single-lane roundabout without bicycle and pedestrian traffic. The second model simulates a single-lane roundabout with a pedestrian crossing and mixed flow bicyclists. The third model simulates a single-lane roundabout with a combined pedestrian and bicycle crossing, while the fourth model simulates a single-lane roundabout with a pedestrian crossing and a bicycle lane at the outer perimeter of the roundabout for the bicycles. Traffic data was collected at a modern roundabout in Boca Raton, Florida. ^ The results of this effort show that installing a pedestrian crossing on the roundabout approach will have a negative impact on the entry flow, while the downstream approach will benefit from the newly created gaps by pedestrians. Also, it was concluded that a bicycle lane configuration is more beneficial for all users of the roundabout instead of the mixed flow or combined crossing. Installing the pedestrian crossing at one-car length is more beneficial for pedestrians than two- and three-car lengths. Finally, it was concluded that the effect of the pedestrian crossing on the vehicle queues diminishes as the distance between the crossing and the roundabout increases. ^
Resumo:
This study analyzes transitional areas between public and private space in order to develop a design that might improve social interaction in the city. Architectural elements in specific pedestrian friendly spaces within the Miami area were identified and analyzed as social spaces in terms developed by Ali Mandanipour. Proximity, visual permeability, intersection, layering, and monumentality are design strategies used in many projects to enhance individual encounters. These strategies typically apply to transitional areas and serve as the direct physical links perceived by individuals moving between public and private areas. This project explores the different approaches to transitional areas in the design of an art gallery and surrounding artists' studios on Lincoln Road.
Resumo:
This poster presentation features three route planning applications developed by the Florida International University GIS Center and the Geomatics program at the University of Florida, and outlines their context based differences. The first route planner has been developed for cyclists in three Florida counties, i.e. Miami Dade County, Broward County, and Palm Beach County. The second route planner computes safe pedestrian routes to schools and has been developed for Miami Dade County. The third route planner combines pre-compiled cultural/eco routes and point-to-point route planning for the City of Coral Gables. This poster highlights the differences in design (user interface) and implementation (routing options) between the three route planners as a result of a different application context and target audience.
Resumo:
Questo documento di tesi si incentra principalmente sullo studio delle reti wireless mobili e dei relativi scenari di utilizzo. In particolare, come esse vengono applicate per il riconoscimento e la prevenzione di incidenti stradali. Vista l’importanza di questo problema a livello di sicurezza stradale, ho deciso di sviluppare un' applicazione per smartphone Android, in grado di riconoscere le attività di uso quotidiano dell’utente e associarle a dei comportamenti, come ad esempio quello di un ciclista, di un pedone o di un automobilista. Nel caso in cui, in uno scenario stradale i dispositivi si trovassero ad una distanza ravvicinata, possono comunicare tramite una connessione Wi-Fi Direct il loro ruolo e lanciare messaggi di pericolo per avvisare la loro presenza, in modo da prevenire collisioni stradali. La realtà in cui si vuole collocare questa applicazione è quella che viene chiamata Pedestrian Detection, già idea di General Motors, che la sta sviluppando sui futuri veicoli che metterà in produzione nei prossimi anni e che sicuramente integreranno funzionalità aggiuntive per la segnalazione di pericoli tramite smartphone e Wi-Fi Direct.
Resumo:
This work explores the use of statistical methods in describing and estimating camera poses, as well as the information feedback loop between camera pose and object detection. Surging development in robotics and computer vision has pushed the need for algorithms that infer, understand, and utilize information about the position and orientation of the sensor platforms when observing and/or interacting with their environment.
The first contribution of this thesis is the development of a set of statistical tools for representing and estimating the uncertainty in object poses. A distribution for representing the joint uncertainty over multiple object positions and orientations is described, called the mirrored normal-Bingham distribution. This distribution generalizes both the normal distribution in Euclidean space, and the Bingham distribution on the unit hypersphere. It is shown to inherit many of the convenient properties of these special cases: it is the maximum-entropy distribution with fixed second moment, and there is a generalized Laplace approximation whose result is the mirrored normal-Bingham distribution. This distribution and approximation method are demonstrated by deriving the analytical approximation to the wrapped-normal distribution. Further, it is shown how these tools can be used to represent the uncertainty in the result of a bundle adjustment problem.
Another application of these methods is illustrated as part of a novel camera pose estimation algorithm based on object detections. The autocalibration task is formulated as a bundle adjustment problem using prior distributions over the 3D points to enforce the objects' structure and their relationship with the scene geometry. This framework is very flexible and enables the use of off-the-shelf computational tools to solve specialized autocalibration problems. Its performance is evaluated using a pedestrian detector to provide head and foot location observations, and it proves much faster and potentially more accurate than existing methods.
Finally, the information feedback loop between object detection and camera pose estimation is closed by utilizing camera pose information to improve object detection in scenarios with significant perspective warping. Methods are presented that allow the inverse perspective mapping traditionally applied to images to be applied instead to features computed from those images. For the special case of HOG-like features, which are used by many modern object detection systems, these methods are shown to provide substantial performance benefits over unadapted detectors while achieving real-time frame rates, orders of magnitude faster than comparable image warping methods.
The statistical tools and algorithms presented here are especially promising for mobile cameras, providing the ability to autocalibrate and adapt to the camera pose in real time. In addition, these methods have wide-ranging potential applications in diverse areas of computer vision, robotics, and imaging.
Resumo:
Bayesian nonparametric models, such as the Gaussian process and the Dirichlet process, have been extensively applied for target kinematics modeling in various applications including environmental monitoring, traffic planning, endangered species tracking, dynamic scene analysis, autonomous robot navigation, and human motion modeling. As shown by these successful applications, Bayesian nonparametric models are able to adjust their complexities adaptively from data as necessary, and are resistant to overfitting or underfitting. However, most existing works assume that the sensor measurements used to learn the Bayesian nonparametric target kinematics models are obtained a priori or that the target kinematics can be measured by the sensor at any given time throughout the task. Little work has been done for controlling the sensor with bounded field of view to obtain measurements of mobile targets that are most informative for reducing the uncertainty of the Bayesian nonparametric models. To present the systematic sensor planning approach to leaning Bayesian nonparametric models, the Gaussian process target kinematics model is introduced at first, which is capable of describing time-invariant spatial phenomena, such as ocean currents, temperature distributions and wind velocity fields. The Dirichlet process-Gaussian process target kinematics model is subsequently discussed for modeling mixture of mobile targets, such as pedestrian motion patterns.
Novel information theoretic functions are developed for these introduced Bayesian nonparametric target kinematics models to represent the expected utility of measurements as a function of sensor control inputs and random environmental variables. A Gaussian process expected Kullback Leibler divergence is developed as the expectation of the KL divergence between the current (prior) and posterior Gaussian process target kinematics models with respect to the future measurements. Then, this approach is extended to develop a new information value function that can be used to estimate target kinematics described by a Dirichlet process-Gaussian process mixture model. A theorem is proposed that shows the novel information theoretic functions are bounded. Based on this theorem, efficient estimators of the new information theoretic functions are designed, which are proved to be unbiased with the variance of the resultant approximation error decreasing linearly as the number of samples increases. Computational complexities for optimizing the novel information theoretic functions under sensor dynamics constraints are studied, and are proved to be NP-hard. A cumulative lower bound is then proposed to reduce the computational complexity to polynomial time.
Three sensor planning algorithms are developed according to the assumptions on the target kinematics and the sensor dynamics. For problems where the control space of the sensor is discrete, a greedy algorithm is proposed. The efficiency of the greedy algorithm is demonstrated by a numerical experiment with data of ocean currents obtained by moored buoys. A sweep line algorithm is developed for applications where the sensor control space is continuous and unconstrained. Synthetic simulations as well as physical experiments with ground robots and a surveillance camera are conducted to evaluate the performance of the sweep line algorithm. Moreover, a lexicographic algorithm is designed based on the cumulative lower bound of the novel information theoretic functions, for the scenario where the sensor dynamics are constrained. Numerical experiments with real data collected from indoor pedestrians by a commercial pan-tilt camera are performed to examine the lexicographic algorithm. Results from both the numerical simulations and the physical experiments show that the three sensor planning algorithms proposed in this dissertation based on the novel information theoretic functions are superior at learning the target kinematics with
little or no prior knowledge
Resumo:
In 2015, the Sydenham Street Revived pop-up park project (SSR) transformed Sydenham Street between Princess and Queen Streets into a temporary pedestrian-only public space. The goal of the project was to test out the idea of permanently pedestrianizing this street section. But what did this urban experiment ultimately prove? Using video footage, photographs, and observations recorded before and during the project, this report analyzes the use of the space in order to evaluate the claim that SSR created a successful public space and to make recommendations for a permanent public space on Sydenham Street. Two research methods were used: quantitative data collection, consisting of headcounts of both pedestrians and stationary users of the space; and a qualitative observational survey, based on the criteria for successful public spaces developed by the Project for Public Spaces. Data collection occurred two days one week prior to the project, and two days during the project, on days that were similar in terms of temperature and weather. The research revealed that the SSR did create a successful public space, although additional research is needed in order to determine how the space would function as a public place throughout different seasons, to study the street closure’s impact on surrounding residents and businesses, and to understand how private commercial activity would influence use. Recommendations for a permanent public space on Sydenham Street include considerations for flexible street design and a continuous, barrier-free surface; ensuring that there is an abundance of places to sit; making opportunities for public and community-created art; and to improve walkability by connecting the grid using a mid-block walkway.