987 resultados para Parameters kinetic
Resumo:
This paper presents the advanced analytical methodologies such as Double- G and Double - K models for fracture analysis of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete. Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Double-G model is based on energy concept and couples the Griffith's brittle fracture theory with the bridging softening property of concrete. The double-K fracture model is based on stress intensity factor approach. Various fracture parameters such as cohesive fracture toughness (4), unstable fracture toughness (K-Ic(c)), unstable fracture toughness (K-Ic(un)) and initiation fracture toughness (K-Ic(ini)) have been evaluated based on linear elastic fracture mechanics and nonlinear fracture mechanics principles. Double-G and double-K method uses the secant compliance at the peak point of measured P-CMOD curves for determining the effective crack length. Bi-linear tension softening model has been employed to account for cohesive stresses ahead of the crack tip. From the studies, it is observed that the fracture parameters obtained by using double - G and double - K models are in good agreement with each other. Crack extension resistance has been estimated by using the fracture parameters obtained through double - K model. It is observed that the values of the crack extension resistance at the critical unstable point are almost equal to the values of the unstable fracture toughness K-Ic(un) of the materials. The computed fracture parameters will be useful for crack growth study, remaining life and residual strength evaluation of concrete structural components.
Resumo:
A modification of the jogged-screw model has been adopted recently by the authors to explain observations of 1/2[110]-type jogged-screw dislocations in equiaxed Ti-48Al under creep conditions. The aim of this study has been to verify and validate the parameters and functional dependencies that have been assumed in this previous work. The original solution has been reformulated to take into account the finite length of the moving jog. This is a better approximation of the tall jog. The substructural model parameters have been further investigated in light of the Finite Length Moving Line (FLML) source approximation. The original model assumes that the critical jog height (beyond which the jog is not dragged) is inversely proportional to the applied stress. By accounting for the fact that there are three competing mechanisms (jog dragging, dipole dragging, dipole bypass) possible, we can arrive at a modified critical jog height. The critical jog height was found to be more strongly stress dependent than assumed previously. The original model assumes the jog spacing to be invariant over the stress range. However, dynamic simulation using a line tension model has shown that the jog spacing is inversely proportional to the applied stress. This has also been confirmed by TEM measurements of jog spacings over a range of stresses. Taylor's expression assumed previously to provide the dependence of dislocation density on the applied stress, has now been confirmed by actual dislocation density measurements. Combining all of these parameters and dependencies, derived both from experiment and theory, leads to an excellent prediction of creep rates and stress exponents. The further application of this model to other materials, and the important role of atomistic and dislocation dynamics simulations in its continued development is also discussed.
Resumo:
Mycobacterium tuberculosis, the causative agent of tuberculosis, is at increased risk of accumulating damaged guanine nucleotides such as 8-oxo-dGTP and 8-oxo-GTP because of its residency in the oxidative environment of the host macrophages. By hydrolyzing the oxidized guanine nucleotides before their incorporation into nucleic acids, MutT proteins play a critical role in allowing organisms to avoid their deleterious effects. Mycobacteria possess several MutT proteins. Here, we purified recombinant M. tuberculosis MutT2 (MtuMutT2) and M. smegmatis MutT2 (MsmMutT2) proteins from M. tuberculosis (a slow grower) and M. smegmatis (fast growing model mycobacteria), respectively, for their biochemical characterization. Distinct from the Escherichia coli MutT, which hydrolyzes 8-oxo-dGTP and 8-oxo-GTP, the mycobacterial proteins hydrolyze not only 8-oxo-dGTP and 8-oxo-GTP but also dCTP and 5-methyl-dCTP. Determination of kinetic parameters (K-m and V-max) revealed that while MtuMutT2 hydrolyzes dCTP nearly four times better than it does 8-oxo-dGTP, MsmMutT2 hydrolyzes them nearly equally. Also, MsmMutT2 is about 14 times more efficient than MtuMutT2 in its catalytic activity of hydrolyzing 8-oxo-dGTP. Consistent with these observations, MsmMutT2 but not MtuMutT2 rescues E. coli for MutT deficiency by decreasing both the mutation frequency and A-to-C mutations (a hallmark of MutT deficiency). We discuss these findings in the context of the physiological significance of MutT proteins.
Resumo:
Key points center dot Active calcium signal propagation occurs when an initial calcium trigger elicits calcium release through endoplasmic reticulum (ER) receptors. A high concentration of the calcium trigger in thin-calibre dendrites would suppress release of calcium through hippocampal inositol trisphosphate receptors (InsP3Rs). center dot Could the high-density expression of A-type K+ channels in thin-calibre dendrites be a mechanism for inhibiting this suppression, thereby restoring the utility of the ER as a substrate for active calcium propagation? center dot Quantitative analyses involving experimentally constrained models reveal a bell-shaped dependence of calcium released through InsP3Rs on the A-type K+ channel density, during the propagation of a calcium wave. center dot A-type K+ channels regulated the relative contribution of ER calcium to the induction of synaptic plasticity in the presence of model metabotropic glutamate receptors. center dot These results identify a novel form of interaction between active dendrites and the ER membrane and suggest that A-type K+ channels are ideally placed for inhibiting the suppression of InsP3Rs in thin-calibre dendrites. Abstract The A-type potassium current has been implicated in the regulation of several physiological processes. Here, we explore a role for the A-type potassium current in regulating the release of calcium through inositol trisphosphate receptors (InsP3R) that reside on the endoplasmic reticulum (ER) of hippocampal pyramidal neurons. To do this, we constructed morphologically realistic, conductance-based models equipped with kinetic schemes that govern several calcium signalling modules and pathways, and constrained the distributions and properties of constitutive components by experimental measurements from these neurons. Employing these models, we establish a bell-shaped dependence of calcium release through InsP3Rs on the density ofA-type potassium channels, during the propagation of an intraneuronal calcium wave initiated through established protocols. Exploring the sensitivities of calcium wave initiation and propagation to several underlying parameters, we found that ER calcium release critically depends on dendritic diameter and that wave initiation occurred at branch points as a consequence of a high surface area to volume ratio of oblique dendrites. Furthermore, analogous to the role ofA-type potassium channels in regulating spike latency, we found that an increase in the density ofA-type potassium channels led to increases in the latency and the temporal spread of a propagating calcium wave. Next, we incorporated kinetic models for the metabotropic glutamate receptor (mGluR) signalling components and a calcium-controlled plasticity rule into our model and demonstrate thatthe presence of mGluRs induced a leftward shift in a BienenstockCooperMunro-like synaptic plasticity profile. Finally, we show that the A-type potassium current could regulate the relative contribution of ER calcium to synaptic plasticity induced either through 900 pulses of various stimulus frequencies or through theta burst stimulation. Our results establish a novel form of interaction between active dendrites and the ER membrane, uncovering a powerful mechanism that could regulate biophysical/biochemical signal integration and steer the spatiotemporal spread of signalling microdomains through changes in dendritic excitability.
Resumo:
We develop a unified model to explain the dynamics of driven one dimensional ribbon for materials with strain and magnetic order parameters. We show that the model equations in their most general form explain several results on driven magnetostrictive metallic glass ribbons such as the period doubling route to chaos as a function of a dc magnetic field in the presence of a sinusoidal field, the quasiperiodic route to chaos as a function of the sinusoidal field for a fixed dc field, and induced and suppressed chaos in the presence of an additional low amplitude near resonant sinusoidal field. We also investigate the influence of a low amplitude near resonant field on the period doubling route. The model equations also exhibit symmetry restoring crisis with an exponent close to unity. The model can be adopted to explain certain results on magnetoelastic beam and martensitic ribbon under sinusoidal driving conditions. In the latter case, we find interesting dynamics of a periodic one orbit switching between two equivalent wells as a function of an ac magnetic field that eventually makes a direct transition to chaos under resonant driving condition. The model is also applicable to magnetomartensites and materials with two order parameters. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4790845]
Resumo:
The delineation of seismic source zones plays an important role in the evaluation of seismic hazard. In most of the studies the seismic source delineation is done based on geological features. In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of seismic hazard for south India was carried out using a logic tree approach. Two different types of seismic sources, linear and areal, were considered in the present study to model the seismic sources in the region more precisely. In order to properly account for the attenuation characteristics of the region, three different attenuation relations were used with different weightage factors. Seismic hazard evaluation was done for the probability of exceedance (PE) of 10% and 2% in 50 years. The spatial variation of rock level peak horizontal acceleration (PHA) and spectral acceleration (Sa) values corresponding to return periods of 475 and 2500 years for the entire study area are presented in this work. The peak ground acceleration (PGA) values at ground surface level were estimated based on different NEHRP site classes by considering local site effects.
Resumo:
This paper illustrates a Wavelet Coefficient based approach using experiments to understand the sensitivity of ultrasonic signals due to parametric variation of a crack configuration in a metal plate. A PZT patch sensor/actuator system integrated to a metal plate with through-thickness crack is used. The proposed approach uses piezoelectric patches, which can be used to both actuate and sense the ultrasonic signals. While this approach leads to more flexibility and reduced cost for larger scalability of the sensor/actuator network, the complexity of the signals increases as compared to what is encountered in conventional ultrasonic NDE problems using selective wave modes. A Damage Index (DI) has been introduced, which is function of wavelet coefficient. Experiments have been carried out for various crack sizes, crack orientations and band-limited tone-burst signal through FIR filter. For a 1 cm long crack interrogated with 20 kHz tone-burst signal, the Damage Index (DI) for the horizontal crack orientation increases by about 70% with respect to that for 135 degrees oriented crack and it increases by about 33% with respect to the vertically oriented crack. The detailed results reported in this paper is a step forward to developing computational schemes for parametric identification of damage using sensor/actuator network and ultrasonic wave.
Resumo:
Important diffusion parameters, such as-parabolic growth constant, integrated diffusivity, ratio of intrinsic diffusivities of species Ni and Sn, Kirkendall marker velocity and the activation energy for diffusion kinetics of binary Ni3Sn4 phase have been investigated with the help of incremental diffusion couple technique (Sn/Ni0.57Sn0.43) in the temperature range 200-150 degrees C. Low activation energy extracted from Arrhenius plot indicates grain boundary controlled diffusion process. The species Sn is three times faster than Ni at 200 degrees C. Further, the activation energy of Sn tracer diffusivity is greater than that of Ni.
Resumo:
Many fishes are exposed to air in their natural habitat or during their commercial handling. In natural habitat or during commercial handling, the cat fish Heteropneustes fossilis is exposed to air for > 24 h. Data on its oxidative metabolism in the above condition are not available. Oxidative stress (OS) indices (lipid and protein oxidation), toxic reactive oxygen species (ROS: H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and nonprotein sulfhydryl) and activities of electron transport chain (ETC) enzymes (complex I-IV) were investigated in brain tissue of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 degrees C). Decreased activities of antioxidant (except catalase) and ETC enzymes (except complex II) with increased H2O2 and OS levels were observed in the tissue under water deprivation condition. Positive correlation was observed for complex II activity and non-protein thiol groups with time period of air exposure. The critical time period to induce OS and to reduce most of the studied antioxidant level in brain was found to be 3-6 h air exposure. The data can be useful to minimize the stress generated during commercial handling of the live fishes those exposed to air in general and H. fossilis in particular. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Thermoacoustics is the interaction between heat and sound, which are useful in designing heat engines and heat pumps. Research in the field of thermoacoustics focuses on the demand to improve the performance which is achieved by altering operational, geometrical and fluid parameters. The present study deals with improving the performance of twin thermoacoustic prime mover, which has gained the significant importance in the recent years for the production of high amplitude sound waves. The performance of twin thermoacoustic prime mover is evaluated in terms of onset temperature difference, resonance frequency and pressure amplitude of the acoustic waves by varying the resonator length and charge pressures of fluid medium nitrogen. DeltaEC, the free simulation software developed by LANL, USA is employed in the present study to simulate the performance of twin thermoacoustic prime mover. Experimental and simulated results are compared and the deviation is found to be within 10%.
Resumo:
Proofreading/editing in protein synthesis is essential for accurate translation of information from the genetic code. In this article we present a theoretical investigation of efficiency of a kinetic proofreading mechanism that employs hydrolysis of the wrong substrate as the discriminatory step in enzyme catalytic reactions. We consider aminoacylation of tRNA(Ile) which is a crucial step in protein synthesis and for which experimental results are now available. We present an augmented kinetic scheme and then employ methods of stochastic simulation algorithm to obtain time dependent concentrations of different substances involved in the reaction and their rates of formation. We obtain the rates of product formation and ATP hydrolysis for both correct and wrong substrates (isoleucine and valine in our case, respectively), in single molecular enzyme as well as ensemble enzyme kinetics. The present theoretical scheme correctly reproduces (i) the amplitude of the discrimination factor in the overall rates between isoleucine and valine which is obtained as (1.8x10(2)).(4.33x10(2)) = 7.8x10(4), (ii) the rates of ATP hydrolysis for both Ile and Val at different substrate concentrations in the aminoacylation of tRNA(Ile). The present study shows a non-michaelis type dependence of rate of reaction on tRNA(Ile) concentration in case of valine. The overall editing in steady state is found to be independent of amino acid concentration. Interestingly, the computed ATP hydrolysis rate for valine at high substrate concentration is same as the rate of formation of Ile-tRNA(Ile) whereas at intermediate substrate concentration the ATP hydrolysis rate is relatively low. We find that the presence of additional editing domain in class I editing enzyme makes the kinetic proofreading more efficient through enhanced hydrolysis of wrong product at the editing CP1 domain.
Resumo:
Structural, iono (IL) and thermoluminescence (TL) studies of Zn2SiO4:Sm3+ (1-5 mol%) nanophosphor bombarded with swift heavy ions in the fluence range 3.91 x 10(12)-21.48 x 10(12) cm(-2) have been carried out. The average crystallite sizes for pristine and ion irradiated for 3.91 x 10(12) ions cm(-2) and 21.48 x 10(12) ions cm(-2) were found to be 34, 26 and 20 nm. With increase of ion fluence, the intensity of XRD peaks decreases and FWHM increases. The peak broadening indicates the stress induced point/clusters defects produced due to heavy ion irradiation. IL studies were carried out for different Sm3+ concentrations in Zn2SiO4 by irradiating with ion fluence of 15.62 x 10(12) ions cm(-2). The characteristic emission peaks at similar to 562, 599, 646 and 701 nm were recorded by exciting Si7+ ions in the fluence range 3.91 x 10(12)-21.48 x 10(12) ions cm(-2). These peaks were attributed to (4)G(5/2)-> H-6(5/2) (562 nm), (4)G(5/2)-> H-6(7/2) (599 nm), (4)G(5/2)-> H-6(9/2) (646 nm), and (4)G(5/2)-> H-6(5/2) (701 nm) transitions of Sm3+. The highest emission was recorded at 3 mol% of Sm3+ doped Zn2SiO4. TL studies were carried out for 3 mol% Sm3+ concentration in the fluence range 3.91 x 10(12)-21.48 x 10(12) ions cm(-2). Two U glow peaks at 152 and 223 degrees C were recorded. The kinetic parameters (E, b, and s), were estimated using Chen's peak shape method. Simple glow curve structure (223 degrees C), highly resistive, increase in TL. intensity up to 19.53 x 10(12) ions cm(-2), simple trap distribution makes Zn2SiO4:Sm3+ (3 mol%) phosphor highly useful in radiation dosimetry.
Resumo:
Recent data from high-statistics experiments that have measured the modulus of the pion electromagnetic form factor from threshold to relatively high energies are used as input in a suitable mathematical framework of analytic continuation to find stringent constraints on the shape parameters of the form factor at t = 0. The method uses also as input a precise description of the phase of the form factor in the elastic region based on Fermi-Watson theorem and the analysis of the pi pi scattering amplitude with dispersive Roy equations, and some information on the spacelike region coming from recent high precision experiments. Our analysis confirms the inconsistencies of several data on the modulus, especially from low energies, with analyticity and the input phase, noted in our earlier work. Using the data on the modulus from energies above 0.65 GeV, we obtain, with no specific parametrisation, the prediction < r(pi)(2)> is an element of (0.42, 0.44) fm(2) for the charge radius. The same formalism leads also to very narrow allowed ranges for the higher-order shape parameters at t = 0, with a strong correlation among them.
Resumo:
Short-chain fatty acids (SCFAs) play a major role in carbon cycle and can be utilized as a source of carbon and energy by bacteria. Salmonella typhimurium propionate kinase (StTdcD) catalyzes reversible transfer of the gamma-phosphate of ATP to propionate during L-threonine degradation to propionate. Kinetic analysis revealed that StTdcD possesses broad ligand specificity and could be activated by various SCFAs (propionate > acetate approximate to butyrate), nucleotides (ATP approximate to GTP > CTP approximate to TTP; dATP > dGTP > dCTP) and metal ions (Mg2+ approximate to Mn2+ > Co2+). Inhibition of StTdcD by tricarboxylic acid (TCA) cycle intermediates such as citrate, succinate, alpha-ketoglutarate and malate suggests that the enzyme could be under plausible feedback regulation. Crystal structures of StTdcD bound to PO4 (phosphate), AMP, ATP, Ap4 (adenosine tetraphosphate), GMP, GDP, GTP, CMP and CTP revealed that binding of nucleotide mainly involves hydrophobic interactions with the base moiety and could account for the broad biochemical specificity observed between the enzyme and nucleotides. Modeling and site-directed mutagenesis studies suggest Ala88 to be an important residue involved in determining the rate of catalysis with SCFA substrates. Molecular dynamics simulations on monomeric and dimeric forms of StTdcD revealed plausible open and closed states, and also suggested role for dimerization in stabilizing segment 235-290 involved in interfacial interactions and ligand binding. Observation of an ethylene glycol molecule bound sufficiently close to the gamma-phosphate in StTdcD complexes with triphosphate nucleotides supports direct in-line phosphoryl transfer. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Electrical switching studies on amorphous Si15Te74Ge11 thin film devices show interesting changes in the switching behavior with changes in the input energy supplied; the input energy determines the extent of crystallization in the active volume, which is reflected in the value of SET resistances. This in turn, determines the trend exhibited by switching voltage (V-t) for different input conditions. The results obtained are analyzed on the basis of the amount of Joule heat generated, which determines the temperature of the active volume. Depending on the final temperature, devices are rendered either in the intermediate state with a resistance of 5*10(2) Omega or the ON state with a resistance of 5*10(1) Omega. (C) 2013 Elsevier B.V. All rights reserved.