832 resultados para PRINCIPAL COMPONENTS
Resumo:
The purpose of this study was to better understand the study behaviors and habits of university undergraduate students. It was designed to determine whether undergraduate students could be grouped based on their self-reported study behaviors and if any grouping system could be determined, whether group membership was related to students’ academic achievement. A total of 152 undergraduate students voluntarily participated in the current study by completing the Study Behavior Inventory instrument. All participants were enrolled in fall semester of 2010 at Florida International University. The Q factor analysis technique using principal components extraction and a varimax rotation was used in order to examine the participants in relation to each other and to detect a pattern of intercorrelations among participants based on their self-reported study behaviors. The Q factor analysis yielded a two factor structure representing two distinct student types among participants regarding their study behaviors. The first student type (i.e., Factor 1) describes proactive learners who organize both their study materials and study time well. Type 1 students are labeled “Proactive Learners with Well-Organized Study Behaviors”. The second type (i.e., Factor 2) represents students who are poorly organized as well as being very likely to procrastinate. Type 2 students are labeled Disorganized Procrastinators. Hierarchical linear regression was employed to examine the relationship between student type and academic achievement as measured by current grade point averages (GPAs). The results showed significant differences in GPAs between Type 1 and Type 2 students at the .05 significance level. Furthermore, student type was found to be a significant predictor of academic achievement beyond and above students’ attribute variables including sex, age, major, and enrollment status. The study has several implications for educational researchers, practitioners, and policy makers in terms of improving college students' learning behaviors and outcomes.
Resumo:
Extensive data sets on water quality and seagrass distributions in Florida Bay have been assembled under complementary, but independent, monitoring programs. This paper presents the landscape-scale results from these monitoring programs and outlines a method for exploring the relationships between two such data sets. Seagrass species occurrence and abundance data were used to define eight benthic habitat classes from 677 sampling locations in Florida Bay. Water quality data from 28 monitoring stations spread across the Bay were used to construct a discriminant function model that assigned a probability of a given benthic habitat class occurring for a given combination of water quality variables. Mean salinity, salinity variability, the amount of light reaching the benthos, sediment depth, and mean nutrient concentrations were important predictor variables in the discriminant function model. Using a cross-validated classification scheme, this discriminant function identified the most likely benthic habitat type as the actual habitat type in most cases. The model predicted that the distribution of benthic habitat types in Florida Bay would likely change if water quality and water delivery were changed by human engineering of freshwater discharge from the Everglades. Specifically, an increase in the seasonal delivery of freshwater to Florida Bay should cause an expansion of seagrass beds dominated by Ruppia maritima and Halodule wrightii at the expense of the Thalassia testudinum-dominated community that now occurs in northeast Florida Bay. These statistical techniques should prove useful for predicting landscape-scale changes in community composition in diverse systems where communities are in quasi-equilibrium with environmental drivers.
Resumo:
The need to discern the dimensions of curiosity is compelling as researchers strive to understand better the developmental implications of learning. Six hundred and two participants completed 10 curiosity scales. Scores were factored using Principal Components Analysis and a varimax solution. A threefactor interpretation of the curiosity construct was supported.
Resumo:
Tree island ecosystems are important and distinct features of Florida Everglades wetlands. We described the inter-relationships among abiotic factors describing seasonally flooded tree islands and characterized plant–soil relationships in tree islands occurring in a relatively unimpacted area of the Everglades. We used Principal Components Analysis (PCA) to reduce our multi-factor dataset, quantified forest structure and vegetation nutrient dynamics, and related these vegetation parameters to PCA summary variables using linear regression analyses. We found that, of the 21 abiotic parameters used to characterize the ecosystem structure of seasonally flooded tree islands, 13 parameters were significantly correlated with four principal components, and they described 78% of the variance among the study islands. Most variation was described by factors related to soil oxidation and hydrology, exemplifying the sensitivity of tree island structure to hydrologic conditions. PCA summary variables describing tree island structure were related to variability in Chrysobalanus icaco (L.) canopy cover, Ilex cassine (L.) and Salix caroliniana (Michx.) canopy cover, Myrica cerifera (L.) plot frequency, litter turnover, % phosphorus resorption of co-dominant species, and nitrogen nutrient-use efficiency. This study supported findings that vegetation characteristics can be sensitive indicators of variability in tree island ecosystem structure. This study produced valuable, information which was used to recommend ecological targets (i.e. restoration performance measures) for seasonally flooded tree islands in more impacted regions of the Everglades landscape.
Resumo:
The authors examine underlying dimensions of private club leadership using principal components analysis. The data were collected between 1996 and 2003 from 702 club managers or club chief operating officers who are members of the Club Managers Association of America (CMAA). Five factors - innovation, vision, inner values, stewardship, and communication - were identified as essentials of private club leadership.
Resumo:
The purpose of this study was to examine pediatric occupational therapists attitudes towards family-centered care. Specific attributes identified by the literature (professional characteristics, educational experiences and organizational culture) were investigated to determine their influence on these attitudes. Study participants were 250 pediatric occupational therapists who were randomly selected from the American Occupational Therapy Association special interest sections. ^ Participants received a mail packet with three instruments to complete and mail back within 2 weeks. The instruments were (a) the Professional Attitude Scale, (b) the Professional Characteristics Questionnaire, and (c) the Family-Centered Program Rating Scale. There was a 50% return rate. Data analysis was conducted in SPSS using descriptive statistics, correlations and regression analysis. ^ The analysis showed that pediatric occupational therapists working in various practice settings demonstrate favorable attitudes toward family-centered care as measured by the Professional Attitude Scale. There was no correlation between professional characteristics and educational experiences to therapists' attitudes. A moderate correlation (r = .368, p < .05) was found between the occupational therapists attitudes and the organizational culture of their workplaces. A factor analysis was conducted on the organizational culture instrument (FamPRS) as this sample was exclusively pediatric occupational therapists and the original sample was interdisciplinary professionals. Two factors were extracted using a principal components extraction and varimax rotation, in addition to examination of the scree plot. These two factors accounted for 50% of the total variance of the scores on the instrument. Factor 1, called empowerment accounted for 45.6% of the variance, and Factor 2, responsiveness accounted for 4.3% of the variance of the entire instrument. Stepwise regression analysis demonstrated that these two factors accounted for 16% of the variance toward attitudes clinicians hold toward family-centered care. These factors support the tenets of family-centered care; empowering parents to be leaders in their child's health care and helping organizations become more responsive to family needs. ^ These study findings suggest that organizational culture has some influence on occupational therapists attitudes toward family-centered care (R 2 = .16). These findings suggest educators should consider families as valuable resources when considering program planning in family-centered care at preservice and workplace settings. ^
Resumo:
The elemental analysis of soil is useful in forensic and environmental sciences. Methods were developed and optimized for two laser-based multi-element analysis techniques: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS). This work represents the first use of a 266 nm laser for forensic soil analysis by LIBS. Sample preparation methods were developed and optimized for a variety of sample types, including pellets for large bulk soil specimens (470 mg) and sediment-laden filters (47 mg), and tape-mounting for small transfer evidence specimens (10 mg). Analytical performance for sediment filter pellets and tape-mounted soils was similar to that achieved with bulk pellets. An inter-laboratory comparison exercise was designed to evaluate the performance of the LA-ICP-MS and LIBS methods, as well as for micro X-ray fluorescence (μXRF), across multiple laboratories. Limits of detection (LODs) were 0.01-23 ppm for LA-ICP-MS, 0.25-574 ppm for LIBS, 16-4400 ppm for μXRF, and well below the levels normally seen in soils. Good intra-laboratory precision (≤ 6 % relative standard deviation (RSD) for LA-ICP-MS; ≤ 8 % for μXRF; ≤ 17 % for LIBS) and inter-laboratory precision (≤ 19 % for LA-ICP-MS; ≤ 25 % for μXRF) were achieved for most elements, which is encouraging for a first inter-laboratory exercise. While LIBS generally has higher LODs and RSDs than LA-ICP-MS, both were capable of generating good quality multi-element data sufficient for discrimination purposes. Multivariate methods using principal components analysis (PCA) and linear discriminant analysis (LDA) were developed for discriminations of soils from different sources. Specimens from different sites that were indistinguishable by color alone were discriminated by elemental analysis. Correct classification rates of 94.5 % or better were achieved in a simulated forensic discrimination of three similar sites for both LIBS and LA-ICP-MS. Results for tape-mounted specimens were nearly identical to those achieved with pellets. Methods were tested on soils from USA, Canada and Tanzania. Within-site heterogeneity was site-specific. Elemental differences were greatest for specimens separated by large distances, even within the same lithology. Elemental profiles can be used to discriminate soils from different locations and narrow down locations even when mineralogy is similar.
Resumo:
The theoretical construct of control has been defined as necessary (Etzioni, 1965), ubiquitous (Vickers, 1967), and on-going (E. Langer, 1983). Empirical measures, however, have not adequately given meaning to this potent construct, especially within complex organizations such as schools. Four stages of theory-development and empirical testing of school building managerial control using principals and teachers working within the nation's fourth largest district are presented in this dissertation as follows: (1) a review and synthesis of social science theories of control across the literatures of organizational theory, political science, sociology, psychology, and philosophy; (2) a systematic analysis of school managerial activities performed at the building level within the context of curricular and instructional tasks; (3) the development of a survey questionnaire to measure school building managerial control; and (4) initial tests of construct validity including inter-item reliability statistics, principal components analyses, and multivariate tests of significance. The social science synthesis provided support of four managerial control processes: standards, information, assessment, and incentives. The systematic analysis of school managerial activities led to further categorization between structural frequency of behaviors and discretionary qualities of behaviors across each of the control processes and the curricular and instructional tasks. Teacher survey responses (N=486) reported a significant difference between these two dimensions of control, structural frequency and discretionary qualities, for standards, information, and assessments, but not for incentives. The descriptive model of school managerial control suggests that (1) teachers perceive structural and discretionary managerial behaviors under information and incentives more clearly than activities representing standards or assessments, (2) standards are primarily structural while assessments are primarily qualitative, (3) teacher satisfaction is most closely related to the equitable distribution of incentives, (4) each of the structural managerial behaviors has a qualitative effect on teachers, and that (5) certain qualities of managerial behaviors are perceived by teachers as distinctly discretionary, apart from school structure. The variables of teacher tenure and school effectiveness reported significant effects on school managerial control processes, while instructional levels (elementary, junior, and senior) and individual school differences were not found to be significant for the construct of school managerial control.
Resumo:
The purpose of this research paper is to follow a line of ongoing investigations that discuss dates for the origin of the synoptic gospels and evaluate the arguments for early, late, and intermediate dating and their susceptibility to critique from opposing arguments. There are three principal components in dating theories: (1) data from the Greek in the earliest texts (2) data concerning the provenance of the earliest texts (3) and data from the historical context of the first century. The study is significant because, contrary to what might be expected, the starting and key point in deciding on a composition date is the Book of Acts of the Apostles. This study compiled and integrated information, in an unbiased fashion, based on reading and researching large numbers of texts by scholars, such as Hengel, who support an earlier dating, as well as those, such as Fitzmyer, who support a later dating. Furthermore, this study also required knowledge of those scholars who propose dates that do not fall into these main categories. The research demonstrated that by looking at the Book of Acts of the Apostles as the key starting point, the synoptic gospels were most likely composed before 70 CE, therefore, supporting scholars who argue for an earlier date.
Resumo:
The chemical analyses of ferromanganese encrustations found on the seabed west of Misool, eastern Indonesia, indicate that these deposits formed in a way different from that of world-wide occurring manganese nodules. Ferromanganese coated pebbles and fragments that were found in the deeper parts of the study area probably originate from nearby ridges. The ferromanganese crust on the upper part of a dolomite fragment of ?30 kg is likely to be formed by hydrogenous processes, whereas that from the lower part seems to be formed by diagenetic processes mainly. These assumptions are supported by pore-water data from two box cores taken in the same area. The manganese and iron profiles versus depth in these cores indicate a high flux of these metals to the uppermost sediment layer, and possibly into the overlying bottom water. Factor analysis for the principal components of the microprobe analytical results of the mainly hydrogenous ferromanganese crust demonstrates a strong correlation of manganese with the trace metals, of iron with phosphorus and an antipathetic relationship between iron and manganese. Similar results have also been reported for abyssal manganese nodules in the world oceans. Factor analysis for the principal components of the analytical data obtained for the diagenetic ferromanganese crust results in a clear dolomite (Ca/Mg) dilution factor only.
Resumo:
TEXL86 and TEXH86 are organic palaeothermometers based on the lipids of Group 1 Crenarchaeota, recently proposed as a modified version of the original TEX86 index, but with significantly improved geographical coverage. Since few data from the global core top calibration are from the Pacific, this study was carried out to assess whether the global core top calibration is regionally biased or not. The result of principal components analysis of the fractional abundance of GDGTs, an analysis of variance (ANOVA) and the comparison of the residuals of TEXH 86 derived sea surface temperature (SST) estimates of the Pacific subset with that of the global data set suggest that the Pacific subset has a similar TEXH 86-SST relationship with the global data set. However, the regression line through the Pacific data and an ANOVA on the residuals of TEXL 86 derived SST estimates suggest otherwise. The contradictory findings are likely to stem from the large scatter in the Pacific TEXL 86 values in the mid temperature range. While regionality does not seem to exert a strong bias on TEXL 86 and TEXH 86 calibration, it appears that there is a strong need to resolve the large scatter in the global data set, especially in the mid and high latitudes, in order to improve the calibration for a better SST estimation.
Resumo:
Skeletal muscle consists of muscle fiber types that have different physiological and biochemical characteristics. Basically, the muscle fiber can be classified into type I and type II, presenting, among other features, contraction speed and sensitivity to fatigue different for each type of muscle fiber. These fibers coexist in the skeletal muscles and their relative proportions are modulated according to the muscle functionality and the stimulus that is submitted. To identify the different proportions of fiber types in the muscle composition, many studies use biopsy as standard procedure. As the surface electromyography (EMGs) allows to extract information about the recruitment of different motor units, this study is based on the assumption that it is possible to use the EMG to identify different proportions of fiber types in a muscle. The goal of this study was to identify the characteristics of the EMG signals which are able to distinguish, more precisely, different proportions of fiber types. Also was investigated the combination of characteristics using appropriate mathematical models. To achieve the proposed objective, simulated signals were developed with different proportions of motor units recruited and with different signal-to-noise ratios. Thirteen characteristics in function of time and the frequency were extracted from emulated signals. The results for each extracted feature of the signals were submitted to the clustering algorithm k-means to separate the different proportions of motor units recruited on the emulated signals. Mathematical techniques (confusion matrix and analysis of capability) were implemented to select the characteristics able to identify different proportions of muscle fiber types. As a result, the average frequency and median frequency were selected as able to distinguish, with more precision, the proportions of different muscle fiber types. Posteriorly, the features considered most able were analyzed in an associated way through principal component analysis. Were found two principal components of the signals emulated without noise (CP1 and CP2) and two principal components of the noisy signals (CP1 and CP2 ). The first principal components (CP1 and CP1 ) were identified as being able to distinguish different proportions of muscle fiber types. The selected characteristics (median frequency, mean frequency, CP1 and CP1 ) were used to analyze real EMGs signals, comparing sedentary people with physically active people who practice strength training (weight training). The results obtained with the different groups of volunteers show that the physically active people obtained higher values of mean frequency, median frequency and principal components compared with the sedentary people. Moreover, these values decreased with increasing power level for both groups, however, the decline was more accented for the group of physically active people. Based on these results, it is assumed that the volunteers of the physically active group have higher proportions of type II fibers than sedentary people. Finally, based on these results, we can conclude that the selected characteristics were able to distinguish different proportions of muscle fiber types, both for the emulated signals as to the real signals. These characteristics can be used in several studies, for example, to evaluate the progress of people with myopathy and neuromyopathy due to the physiotherapy, and also to analyze the development of athletes to improve their muscle capacity according to their sport. In both cases, the extraction of these characteristics from the surface electromyography signals provides a feedback to the physiotherapist and the coach physical, who can analyze the increase in the proportion of a given type of fiber, as desired in each case.
Resumo:
Réalisé en milieu collégial (cégep)
Resumo:
Background: Identifying biological markers to aid diagnosis of bipolar disorder (BD) is critically important. To be considered a possible biological marker, neural patterns in BD should be discriminant from those in healthy individuals (HI). We examined patterns of neuromagnetic responses revealed by magnetoencephalography (MEG) during implicit emotion-processing using emotional (happy, fearful, sad) and neutral facial expressions, in sixteen BD and sixteen age- and gender-matched healthy individuals. Methods: Neuromagnetic data were recorded using a 306-channel whole-head MEG ELEKTA Neuromag System, and preprocessed using Signal Space Separation as implemented in MaxFilter (ELEKTA). Custom Matlab programs removed EOG and ECG signals from filtered MEG data, and computed means of epoched data (0-250ms, 250-500ms, 500-750ms). A generalized linear model with three factors (individual, emotion intensity and time) compared BD and HI. A principal component analysis of normalized mean channel data in selected brain regions identified principal components that explained 95% of data variation. These components were used in a quadratic support vector machine (SVM) pattern classifier. SVM classifier performance was assessed using the leave-one-out approach. Results: BD and HI showed significantly different patterns of activation for 0-250ms within both left occipital and temporal regions, specifically for neutral facial expressions. PCA analysis revealed significant differences between BD and HI for mild fearful, happy, and sad facial expressions within 250-500ms. SVM quadratic classifier showed greatest accuracy (84%) and sensitivity (92%) for neutral faces, in left occipital regions within 500-750ms. Conclusions: MEG responses may be used in the search for disease specific neural markers.
Resumo:
Subspaces and manifolds are two powerful models for high dimensional signals. Subspaces model linear correlation and are a good fit to signals generated by physical systems, such as frontal images of human faces and multiple sources impinging at an antenna array. Manifolds model sources that are not linearly correlated, but where signals are determined by a small number of parameters. Examples are images of human faces under different poses or expressions, and handwritten digits with varying styles. However, there will always be some degree of model mismatch between the subspace or manifold model and the true statistics of the source. This dissertation exploits subspace and manifold models as prior information in various signal processing and machine learning tasks.
A near-low-rank Gaussian mixture model measures proximity to a union of linear or affine subspaces. This simple model can effectively capture the signal distribution when each class is near a subspace. This dissertation studies how the pairwise geometry between these subspaces affects classification performance. When model mismatch is vanishingly small, the probability of misclassification is determined by the product of the sines of the principal angles between subspaces. When the model mismatch is more significant, the probability of misclassification is determined by the sum of the squares of the sines of the principal angles. Reliability of classification is derived in terms of the distribution of signal energy across principal vectors. Larger principal angles lead to smaller classification error, motivating a linear transform that optimizes principal angles. This linear transformation, termed TRAIT, also preserves some specific features in each class, being complementary to a recently developed Low Rank Transform (LRT). Moreover, when the model mismatch is more significant, TRAIT shows superior performance compared to LRT.
The manifold model enforces a constraint on the freedom of data variation. Learning features that are robust to data variation is very important, especially when the size of the training set is small. A learning machine with large numbers of parameters, e.g., deep neural network, can well describe a very complicated data distribution. However, it is also more likely to be sensitive to small perturbations of the data, and to suffer from suffer from degraded performance when generalizing to unseen (test) data.
From the perspective of complexity of function classes, such a learning machine has a huge capacity (complexity), which tends to overfit. The manifold model provides us with a way of regularizing the learning machine, so as to reduce the generalization error, therefore mitigate overfiting. Two different overfiting-preventing approaches are proposed, one from the perspective of data variation, the other from capacity/complexity control. In the first approach, the learning machine is encouraged to make decisions that vary smoothly for data points in local neighborhoods on the manifold. In the second approach, a graph adjacency matrix is derived for the manifold, and the learned features are encouraged to be aligned with the principal components of this adjacency matrix. Experimental results on benchmark datasets are demonstrated, showing an obvious advantage of the proposed approaches when the training set is small.
Stochastic optimization makes it possible to track a slowly varying subspace underlying streaming data. By approximating local neighborhoods using affine subspaces, a slowly varying manifold can be efficiently tracked as well, even with corrupted and noisy data. The more the local neighborhoods, the better the approximation, but the higher the computational complexity. A multiscale approximation scheme is proposed, where the local approximating subspaces are organized in a tree structure. Splitting and merging of the tree nodes then allows efficient control of the number of neighbourhoods. Deviation (of each datum) from the learned model is estimated, yielding a series of statistics for anomaly detection. This framework extends the classical {\em changepoint detection} technique, which only works for one dimensional signals. Simulations and experiments highlight the robustness and efficacy of the proposed approach in detecting an abrupt change in an otherwise slowly varying low-dimensional manifold.