923 resultados para PHYSICAL RADIATION EFFECTS
Resumo:
Background: Traditional causal modeling of health interventions tends to be linear in nature and lacks multidisciplinarity. Consequently, strategies for exercise prescription in health maintenance are typically group based and focused on the role of a common optimal health status template toward which all individuals should aspire. ----- ----- Materials and methods: In this paper, we discuss inherent weaknesses of traditional methods and introduce an approach exercise training based on neurobiological system variability. The significance of neurobiological system variability in differential learning and training was highlighted.----- ----- Results: Our theoretical analysis revealed differential training as a method by which neurobiological system variability could be harnessed to facilitate health benefits of exercise training. It was observed that this approach emphasizes the importance of using individualized programs in rehabilitation and exercise, rather than group-based strategies to exercise prescription.----- ----- Conclusion: Research is needed on potential benefits of differential training as an approach to physical rehabilitation and exercise prescription that could counteract psychological and physical effects of disease and illness in subelite populations. For example, enhancing the complexity and variability of movement patterns in exercise prescription programs might alleviate effects of depression in nonathletic populations and physical effects of repetitive strain injuries experienced by athletes in elite and developing sport programs.
Resumo:
There has been much conjecture of late as to whether the patentable subject matter standard contains a physicality requirement. The issue came to a head when the Federal Circuit introduced the machine-or-transformation test in In re Bilski and declared it to be the sole test for determining subject matter eligibility. Many commentators criticized the test, arguing that it is inconsistent with Supreme Court precedent and the need for the patent system to respond appropriately to all new and useful innovation in whatever form it arises. Those criticisms were vindicated when, on appeal, the Supreme Court in Bilski v. Kappos dispensed with any suggestion that the patentable subject matter test involves a physicality requirement. In this article, the issue is addressed from a normative perspective: it asks whether the patentable subject matter test should contain a physicality requirement. The conclusion reached is that it should not, because such a limitation is not an appropriate means of encouraging much of the valuable innovation we are likely to witness during the Information Age. It is contended that it is not only traditionally-recognized mechanical, chemical and industrial manufacturing processes that are patent eligible, but that patent eligibility extends to include non-machine implemented and non-physical methods that do not have any connection with a physical device and do not cause a physical transformation of matter. Concerns raised that there is a trend of overreaching commoditization or propertization, where the boundaries of patent law have been expanded too far, are unfounded since the strictures of novelty, nonobviousness and sufficiency of description will exclude undeserving subject matter from patentability. The argument made is that introducing a physicality requirement will have unintended adverse effects in various fields of technology, particularly those emerging technologies that are likely to have a profound social effect in the future.
Resumo:
In this feasibility study an organic plastic scintillator is calibrated against ionisation chamber measurements and then embedded in a polymer gel dosimeter to obtain a quasi-4D experimental measurement of a radiation field. This hybrid dosimeter was irradiated with a linear accelerator, with temporal measurements of the dose rate being acquired by the scintillator and spatial measurements acquired with the gel dosimeter. The detectors employed in this work are radiologically equivalent; and we show that neither detector perturbs the intensity of the radiation field of the other. By employing these detectors in concert, spatial and temporal variations in the radiation intensity can now be detected and gel dosimeters can be calibrated for absolute dose from a single irradiation.
Resumo:
This study uses dosimetry film measurements and Monte Carlo simulations to investigate the accuracy of type-a (pencil-beam) dose calculations for predicting the radiation doses delivered during stereotactic radiotherapy treatments of the brain. It is shown that when evaluating doses in a water phantom, the type-a algorithm provides dose predictions which are accurate to within clinically relevant criteria, gamma(3%,3mm), but these predictions are nonetheless subtly different from the results of evaluating doses from the same fields using radiochromic film and Monte Carlo simulations. An analysis of a clinical meningioma treatment suggests that when predicting stereotactic radiotherapy doses to the brain, the inaccuracies of the type-a algorithm can be exacerbated by inadequate evaluation of the effects of nearby bone or air, resulting in dose differences of up to 10% for individual fields. The results of this study indicate the possible advantage of using Monte Carlo calculations, as well as measurements with high-spatial resolution media, to verify type-a predictions of dose delivered in cranial treatments.
Resumo:
Background In order to provide insights into the complex biochemical processes inside a cell, modelling approaches must find a balance between achieving an adequate representation of the physical phenomena and keeping the associated computational cost within reasonable limits. This issue is particularly stressed when spatial inhomogeneities have a significant effect on system's behaviour. In such cases, a spatially-resolved stochastic method can better portray the biological reality, but the corresponding computer simulations can in turn be prohibitively expensive. Results We present a method that incorporates spatial information by means of tailored, probability distributed time-delays. These distributions can be directly obtained by single in silico or a suitable set of in vitro experiments and are subsequently fed into a delay stochastic simulation algorithm (DSSA), achieving a good compromise between computational costs and a much more accurate representation of spatial processes such as molecular diffusion and translocation between cell compartments. Additionally, we present a novel alternative approach based on delay differential equations (DDE) that can be used in scenarios of high molecular concentrations and low noise propagation. Conclusions Our proposed methodologies accurately capture and incorporate certain spatial processes into temporal stochastic and deterministic simulations, increasing their accuracy at low computational costs. This is of particular importance given that time spans of cellular processes are generally larger (possibly by several orders of magnitude) than those achievable by current spatially-resolved stochastic simulators. Hence, our methodology allows users to explore cellular scenarios under the effects of diffusion and stochasticity in time spans that were, until now, simply unfeasible. Our methodologies are supported by theoretical considerations on the different modelling regimes, i.e. spatial vs. delay-temporal, as indicated by the corresponding Master Equations and presented elsewhere.
Size effects on tensile and fatigue behaviour of polycrystalline metal foils at the micrometer scale
Resumo:
Tensile and fatigue properties of as-rolled and annealed polycrystalline Cu foils with different thicknesses at the micrometer scale were investigated. Uniaxial tensile testing results showed that with decreasing foil thickness the uniform elongation decreases for both as-rolled and annealed foils, whereas the yield strength and ultimate tensile strength increase for as-rolled foils, but decrease for the annealed foils. For both the as-rolled or annealed foils, bending fatigue resistance decreases with decreasing the foil thickness. Deformation and fatigue damage behaviour of the free-standing foils were characterised as a function of foil thickness. In addition, the fatigue strength of various small-scale Cu foils was compared to understand they physical mechanisms of size effects on mechanical properties of the metallic material at micrometer scales.
Resumo:
Characteristics of modal sound radiation of finite cylindrical shells are studied using finite element and boundary element methods in this paper. In the low frequency range, modal radiation efficiencies of finite cylindrical shells are found to asymptotically approach those of the corresponding infinite cylindrical shell when structural trace wavelengths of the cylindrical shells are greater than the acoustic wavelength. Modal radiation efficiencies for each group of modes having the same circumferential modal index decrease as the axial modal index increases. They converge to each other when the axial trace wavelength is much greater than the circumferential trace wavelength. The mechanism leading to lower radiation efficiency of modes with higher circumferential modal index of short cylinders is explained. Similar to those of flat plate panels, change in slope or waviness is observed in modal radiation efficiency curves of modes with higher order axial modal index at medium frequencies. This is attributed to the interference of sound radiated by neighbouring vibrating cells when the distance between nodal lines of a vibrating mode is in the same order or smaller than the acoustic wavelength. Effects of the internal sound field on modal radiation efficiencies of a finite open-end cylinder are discussed.
Resumo:
Natural convection of a two-dimensional laminar steady-state incompressible fluid flow in a modified rectangular enclosure with sinusoidal corrugated top surface has been investigated numerically. The present study has been carried out for different corrugation frequencies on the top surface as well as aspect ratios of the enclosure in order to observe the change in hydrodynamic and thermal behavior with constant corrugation amplitude. A constant flux heat source is flush mounted on the top sinusoidal wall, modeling a wavy sheet shaded room exposed to sunlight. The flat bottom surface is considered as adiabatic, while the both vertical side walls are maintained at the constant ambient temperature. The fluid considered inside the enclosure is air having Prandtl number of 0.71. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. The results in terms of isotherms, streamlines and average Nusselt numbers are obtained for the Rayleigh number ranging from 10^3 to 10^6 with constant physical properties for the fluid medium considered. It is found that the convective phenomena are greatly influenced by the presence of the corrugation and variation of aspect ratios.
Resumo:
Velocity jump processes are discrete random walk models that have many applications including the study of biological and ecological collective motion. In particular, velocity jump models are often used to represent a type of persistent motion, known as a “run and tumble”, which is exhibited by some isolated bacteria cells. All previous velocity jump processes are non-interacting, which means that crowding effects and agent-to-agent interactions are neglected. By neglecting these agent-to-agent interactions, traditional velocity jump models are only applicable to very dilute systems. Our work is motivated by the fact that many applications in cell biology, such as wound healing, cancer invasion and development, often involve tissues that are densely packed with cells where cell-to-cell contact and crowding effects can be important. To describe these kinds of high cell density problems using a velocity jump process we introduce three different classes of crowding interactions into a one-dimensional model. Simulation data and averaging arguments lead to a suite of continuum descriptions of the interacting velocity jump processes. We show that the resulting systems of hyperbolic partial differential equations predict the mean behavior of the stochastic simulations very well.
Resumo:
Background: Exercise interventions during adjuvant cancer therapy have been shown to increase functional capacity, relieve fatigue and distress and may assist rates of chemotherapy completion. These studies have been limited to breast, gastric and mixed cancer groups and it is not yet known if a similar intervention is even feasible among women with ovarian cancer. We aimed to assess safety, feasibility and potential effect of a walking intervention in women undergoing chemotherapy for ovarian cancer. Methods: Women newly diagnosed with ovarian cancer were recruited to participate in an individualised walking intervention throughout chemotherapy and were assessed pre-and post-intervention. Feasibility measures included session adherence, compliance with exercise physiologist prescribed walking targets and self-reported program acceptability. Changes in objective physical functioning (6 minute walk test), self-reported distress (Hospital Anxiety and Depression Scale), symptoms (Memorial Symptom Assessment Scale - Physical) and quality of life (Functional Assessment of Cancer Therapy - Ovarian) were calculated, and chemotherapy completion and adverse intervention effects recorded. Results: Seventeen women were enrolled (63% recruitment rate). Mean age was 60 years (SD = 8 years), 88% were diagnosed with FIGO stage III or IV disease, 14 women underwent adjuvant and three neo-adjuvant chemotherapy. On average, women adhered to > 80% of their intervention sessions and complied with 76% of their walking targets, with the majority walking four days a week at moderate intensity for 30 minutes per session. Meaningful improvements were found in physical functioning, physical symptoms, physical well-being and ovarian cancerspecific quality of life. Most women (76%) completed ≥85% of their planned chemotherapy dose. There were no withdrawals or serious adverse events and all women reported the program as being helpful. Conclusions: These positive preliminary results suggest that this walking intervention for women receiving chemotherapy for ovarian cancer is safe, feasible and acceptable and could be used in development of future work. Trial registration: ACTRN12609000252213
Resumo:
Objective: Parental illness (PI) may have adverse impacts on youth and family functioning. Research in this area has suffered from the absence of a guiding comprehensive framework. This study tested a conceptual model of the effects of PI on youth and family functioning derived from the Family Ecology Framework (FEF; Pedersen & Revenson, 2005). Method. A total of 85 parents with multiple sclerosis and 127 youth completed questionnaires at Time 1 and 12 months later at Time 2. Results. Structural equation modeling results supported the FEF with regards to physical-illness disability. Specifically, the proposed mediators (role redistribution, stress, and stigma) were implicated in the processes that link parental disability to several domains of youth adjustment. The results suggest that the effects of parental depression (PD) are not mediated through these processes; rather, PD directly affects family functioning, which in turn mediates the effects onto youth adjustment. Family functioning further mediated between PD and youth well-being and behavioral-social difficulties. Conclusions. Although results support the effects of parental-illness disability on youth and family functioning via the proposed mediational mechanisms, the additive effects of PD on youth physical and mental health occur through direct and indirect (via family functioning) pathways, respectively.
Resumo:
Biomarker analysis has been implemented in sports research in an attempt to monitor the effects of exertion and fatigue in athletes. This study proposed that while such biomarkers may be useful for monitoring injury risk in workers, proteomic approaches might also be utilised to identify novel exertion or injury markers. We found that urinary urea and cortisol levels were significantly elevated in mining workers following a 12 hour overnight shift. These levels failed to return to baseline over 24h in the more active maintenance crew compared to truck drivers (operators) suggesting a lack of recovery between shifts. Use of a SELDI-TOF MS approach to detect novel exertion or injury markers revealed a spectral feature which was associated with workers in both work categories who were engaged in higher levels of physical activity. This feature was identified as the LG3 peptide, a C-terminal fragment of the anti-angiogenic / anti-tumourigenic protein endorepellin. This finding suggests that urinary LG3 peptide may be a biomarker of physical activity. It is also possible that the activity mediated release of LG3 / endorepellin into the circulation may represent a biological mechanism for the known inverse association between physical activity and cancer risk / survival.