993 resultados para PCR sequencing
Resumo:
The identification and characterisation of Cryptosporidiumgenotypes and subtypes are fundamental to the study of cryptosporidiosis epidemiology, aiding in prevention and control strategies. The objective was to determine the genetic diversity ofCryptosporidium in samples obtained from hospitals of Rio de Janeiro, Brazil, and Buenos Aires, Argentina. Samples were analysed by microscopy and TaqMan polymerase chain reaction (PCR) assays forCryptosporidium detection, genotyped by nested-PCR-restriction fragment length polymorphism (RFLP) analysis of the 18S rRNA gene and subtyped by DNA sequencing of the gp60 gene. Among the 89 samples from Rio de Janeiro, Cryptosporidium spp were detected in 26 by microscopy/TaqMan PCR. In samples from Buenos Aires,Cryptosporidium was diagnosed in 15 patients of the 132 studied. The TaqMan PCR and the nested-PCR-RFLP detected Cryptosporidium parvum, Cryptosporidium hominis, and co-infections of both species. In Brazilian samples, the subtypes IbA10G2 and IIcA5G3 were observed. The subtypes found in Argentinean samples were IbA10G2, IaA10G1R4, IaA11G1R4, and IeA11G3T3, and mixed subtypes of Ia and IIa families were detected in the co-infections. C. hominis was the species more frequently detected, and subtype family Ib was reported in both countries. Subtype diversity was higher in Buenos Aires than in Rio de Janeiro and two new subtypes were described for the first time.
Resumo:
Cystic fibrosis (CF) patients with Burkholderia cepacia complex (Bcc) pulmonary infections have high morbidity and mortality. The aim of this study was to compare different methods for identification of Bcc species isolated from paediatric CF patients. Oropharyngeal swabs from children with CF were used to obtain isolates of Bcc samples to evaluate six different tests for strain identification. Conventional (CPT) and automatised (APT) phenotypic tests, polymerase chain reaction (PCR)-recA, restriction fragment length polymorphism-recA, recAsequencing, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) were applied. Bacterial isolates were also tested for antimicrobial susceptibility. PCR-recA analysis showed that 36 out of the 54 isolates were Bcc. Kappa index data indicated almost perfect agreement between CPT and APT, CPT and PCR-recA, and APT and PCR-recA to identify Bcc, and MALDI-TOF and recAsequencing to identify Bcc species. The recAsequencing data and the MALDI-TOF data agreed in 97.2% of the isolates. Based on recA sequencing, the most common species identified were Burkholderia cenocepacia IIIA (33.4%),Burkholderia vietnamiensis (30.6%), B. cenocepaciaIIIB (27.8%), Burkholderia multivorans (5.5%), and B. cepacia (2.7%). MALDI-TOF proved to be a useful tool for identification of Bcc species obtained from CF patients, although it was not able to identify B. cenocepacia subtypes.
Resumo:
Gastric (GC) and breast (BrC) cancer are two of the most common and deadly tumours. Different lines of evidence suggest a possible causative role of viral infections for both GC and BrC. Wide genome sequencing (WGS) technologies allow searching for viral agents in tissues of patients with cancer. These technologies have already contributed to establish virus-cancer associations as well as to discovery new tumour viruses. The objective of this study was to document possible associations of viral infection with GC and BrC in Mexican patients. In order to gain idea about cost effective conditions of experimental sequencing, we first carried out an in silico simulation of WGS. The next-generation-platform IlluminaGallx was then used to sequence GC and BrC tumour samples. While we did not find viral sequences in tissues from BrC patients, multiple reads matching Epstein-Barr virus (EBV) sequences were found in GC tissues. An end-point polymerase chain reaction confirmed an enrichment of EBV sequences in one of the GC samples sequenced, validating the next-generation sequencing-bioinformatics pipeline.
Resumo:
Lactococcus garvieae is a Gram-positive, catalase negative coccus arranged in pairs or short chains, well-known as a fish pathogen. We report a case of Infective Endocarditis (IE) by L. garvieae in a native valve from a 68-year-old male with unknown history of contact with raw fish and an extensive history of heart disease. This case highlights the reliability of MALDI-TOF MS compared to conventional methods in the identification of rare microorganisms like this.
Resumo:
Most airborne microorganisms are natural components of our ecosystem. Soil, vegetation and animals, including humans, are sources for aerial release of these living or dead cells. In the past, assessment of airborne microorganisms was mainly restricted to occupational health concerns. Indeed, in several occupations, exposure to very high concentrations of non-infectious airborne bacteria and fungi, result in allergenic, toxic or irritant reactions. Recently, the threat of bioterrorism and pandemics have highlighted the urgent need to increase knowledge of bioaerosol ecology. More fundamentally, airborne bacterial and fungal communities begin to draw much more consideration from environmental microbiologists, who have neglected this area for a long time. This increased interest of scientists is to a great part due to the development and use of real-time PCR techniques to identify and quantify airborne microorganisms. Even if the advantages of the PCR technology are obvious, researchers are confronted with new problems. This review describes the methodological state of the art in bioaerosols field and emphasizes the future challenges and perspectives of the real-time PCR-based methods for airborne microorganism studies.
Resumo:
A single-step PCR assay with genus-specific primers for the amplification of a 223-bp region of the sequence encoding a 31-kDa immunogenetic Brucella abortus protein (BCSP31) was used for the rapid diagnosis of human brucellosis. We examined peripheral blood from 47 patients, with a total of 50 cases of brucellosis, and a group of 60 control subjects, composed of patients with febrile syndromes of several etiologies other than brucellosis, asymptomatic subjects seropositive for Brucella antibodies, and healthy subjects. Diagnosis of brucellosis was established in 35 cases (70%) by isolation of Brucella in blood culture and in the other 15 cases (30%) by clinical and serological means. The sensitivity of our PCR assay was 100%, since it correctly identified all 50 cases of brucellosis, regardless of the duration of the disease, the positivity of the blood culture, or the presence of focal forms. The specificity of the test was 98.3%, and the only false-positive result was for a patient who had had brucellosis 2 months before and possibly had a self-limited relapse. In those patients who relapsed, the results of our PCR assay were positive for both the initial infection and the relapse, becoming negative once the relapse treatment was completed and remaining negative in the follow-up tests at 2, 4, and 6 months. In conclusion, these results suggest that the PCR assay is rapid and easy to perform and highly sensitive and specific, and it may therefore be considered a useful tool for diagnosis of human brucellosis.
Resumo:
This work shows the use of adaptation techniques involved in an e-learning system that considers students' learning styles and students' knowledge states. The mentioned e-learning system is built on a multiagent framework designed to examine opportunities to improve the teaching and to motivate the students to learn what they want in a user-friendly and assisted environment
Resumo:
In order to evaluate the diagnostic yield of a PCR assay for patients with focal complications of brucellosis, we studied by PCR and by conventional microbiological techniques 34 nonblood samples from 32 patients with different focal forms of brucellosis. The samples from patients with brucellosis were paired to an equal number of control samples from the same locations of patients whose illnesses had different etiologies. Thirty-three of the 34 nonblood samples (97%) from the brucellosis patients were positive by PCR, whereas Brucella spp. were isolated from only 29.4% of the conventional cultures. For 11.4% of the patients, the confirmatory serological tests were either negative or showed titers below the diagnostic range. Two patients (6.2%) from the control group, both with tuberculous vertebral osteomyelitis, had a positive PCR result. The brucella PCR of blood from these two patients was also positive, and the two strains of Mycobacterium tuberculosis isolated were analyzed by the brucella PCR, with no evidence of amplification. These results show that the PCR assay is far more sensitive than conventional cultures, and this, coupled with its speed and reduction in risk to laboratory workers, makes this technique a very useful tool for the diagnosis of focal complications of brucellosis.
Resumo:
We studied two of the possible factors which can interfere with specific DNA amplification in a peripheral-blood PCR assay used for the diagnosis of human brucellosis. We found that high concentrations of leukocyte DNA and heme compounds inhibit PCR. These inhibitors can be efficiently suppressed by increasing the number of washings to four or five and decreasing the amount of total DNA to 2 to 4 microg, thereby avoiding false-negative results.
Resumo:
BACKGROUND Nucleic acid amplification tests are increasingly used for the rapid diagnosis of tuberculosis. We undertook a comparative study of the efficiency and diagnostic yield of a real-time PCR senX3-regX3 based assay versus the classical IS6110 target and the new commercial methods. METHODS This single-blind prospective comparative study included 145 consecutive samples: 76 from patients with culture-confirmed tuberculosis (86.8% pulmonary and 13.2% extrapulmonary tuberculosis: 48.7% smear-positive and 51.3% smear-negative) and 69 control samples (24 from patients diagnosed with non-tuberculous mycobacteria infections and 45 from patients with suspected tuberculosis which was eventually ruled out). All samples were tested by two CE-marked assays (Xpert®MTB/RIF and AnyplexTM plus MTB/NTM) and two in-house assays targeting senX3-regX3 and the IS6110 gene. RESULTS The detection limit ranged from 1.00E+01 fg for Anyplex, senX3-regX3 and IS6110 to 1.00E+04 fg for Xpert. All three Xpert, senX3-regX3 and IS6110 assays detected all 37 smear-positive cases. Conversely, Anyplex was positive in 34 (91.9%) smear-positive cases. In patients with smear-negative tuberculosis, differences were observed between the assays; Xpert detected 22 (56.41%) of the 39 smear-negative samples, Anyplex 24 (61.53%), senX3-regX3 28 (71.79%) and IS6110 35 (89.74%). Xpert and senX3-regX3 were negative in all control samples; however, the false positive rate was 8.7% and 13% for Anyplex and IS6110, respectively. The overall sensitivity was 77.6%, 85.7%, 77.3% and 94.7% and the specificity was 100%, 100%, 90.8% and 87.0% for the Xpert, senX3-regX3, Anyplex and IS6110 assays, respectively. CONCLUSION Real-time PCR assays targeting IS6110 lack the desired specificity. The Xpert MTB/RIF and in-house senX3-regX3 assays are both sensitive and specific for the detection of MTBC in both pulmonary and extrapulmonary samples. Therefore, the real time PCR senX3-regX3 based assay could be a useful and complementary tool in the diagnosis of tuberculosis.
Resumo:
For a better understanding of the complex coevolutionary processes between hosts and parasites, accurate identification of the actors involved in the interaction is of fundamental importance. Blood parasites of the Order Haemosporidia, responsible for malaria, have become the focus of a broad range of studies in evolutionary biology. Interestingly, molecular-based studies on avian malaria have revealed much higher species diversity than previously inferred with morphology. Meanwhile, studies on bat haemosporidian have been largely neglected. In Europe, only one genus (Polychromophilus) and two species have been morphologically described. To evaluate the presence of potential cryptic species and parasite prevalence, we undertook a molecular characterization of Polychromophilus in temperate zone bats. We used a nested-PCR approach on the cytochrome b mitochondrial gene to detect the presence of parasites in 237 bats belonging to four different species and in the dipteran bat fly Nycteribia kolenatii, previously described as being the vector of Polychromophilus. Polychromophilus murinus was found in the four bat species and in the insect vector with prevalence ranging from 4% for Myotis myotis to 51% for M. daubentoni. By sequencing 682 bp, we then investigated the phylogenetic relationships of Polychromophilus to other published malarial lineages. Seven haplotypes were found, all very closely related, suggesting the presence of a single species in our samples. These haplotypes formed a well-defined clade together with Haemosporidia of tropical bats, revealing a worldwide distribution of this parasite mostly neglected by malarial studies since the 1980s.
Resumo:
BACKGROUND: Jeune asphyxiating thoracic dystrophy (JATD) is a rare, often lethal, recessively inherited chondrodysplasia characterised by shortened ribs and long bones, sometimes accompanied by polydactyly, and renal, liver and retinal disease. Mutations in intraflagellar transport (IFT) genes cause JATD, including the IFT dynein-2 motor subunit gene DYNC2H1. Genetic heterogeneity and the large DYNC2H1 gene size have hindered JATD genetic diagnosis. AIMS AND METHODS: To determine the contribution to JATD we screened DYNC2H1 in 71 JATD patients JATD patients combining SNP mapping, Sanger sequencing and exome sequencing. RESULTS AND CONCLUSIONS: We detected 34 DYNC2H1 mutations in 29/71 (41%) patients from 19/57 families (33%), showing it as a major cause of JATD especially in Northern European patients. This included 13 early protein termination mutations (nonsense/frameshift, deletion, splice site) but no patients carried these in combination, suggesting the human phenotype is at least partly hypomorphic. In addition, 21 missense mutations were distributed across DYNC2H1 and these showed some clustering to functional domains, especially the ATP motor domain. DYNC2H1 patients largely lacked significant extra-skeletal involvement, demonstrating an important genotype-phenotype correlation in JATD. Significant variability exists in the course and severity of the thoracic phenotype, both between affected siblings with identical DYNC2H1 alleles and among individuals with different alleles, which suggests the DYNC2H1 phenotype might be subject to modifier alleles, non-genetic or epigenetic factors. Assessment of fibroblasts from patients showed accumulation of anterograde IFT proteins in the ciliary tips, confirming defects similar to patients with other retrograde IFT machinery mutations, which may be of undervalued potential for diagnostic purposes.
Resumo:
BACKGROUND: Solexa/Illumina short-read ultra-high throughput DNA sequencing technology produces millions of short tags (up to 36 bases) by parallel sequencing-by-synthesis of DNA colonies. The processing and statistical analysis of such high-throughput data poses new challenges; currently a fair proportion of the tags are routinely discarded due to an inability to match them to a reference sequence, thereby reducing the effective throughput of the technology. RESULTS: We propose a novel base calling algorithm using model-based clustering and probability theory to identify ambiguous bases and code them with IUPAC symbols. We also select optimal sub-tags using a score based on information content to remove uncertain bases towards the ends of the reads. CONCLUSION: We show that the method improves genome coverage and number of usable tags as compared with Solexa's data processing pipeline by an average of 15%. An R package is provided which allows fast and accurate base calling of Solexa's fluorescence intensity files and the production of informative diagnostic plots.
Resumo:
The amount of sequence data available today highly facilitates the access to genes from many gene families. Primers amplifying the desired genes over a range of species are readily obtained by aligning conserved gene regions, and laborious gene isolation procedures can often be replaced by quicker PCR-based approaches. However, in the case of multigene families, PCR-based approaches bear the often ignored risk of incomplete isolation of family members. This problem is most prominent in gene families with highly variable and thus unpredictable number of gene copies among species, such as in the major histocompatibility complex (MHC). In this study, we (i) report new primers for the isolation of the MHC class IIB (MHCIIB) gene family in birds and (ii) share our experience with isolating MHCIIB genes from an unprecedented number of avian species from all over the avian phylogeny. We report important and usually underappreciated problems encountered during PCR-based multigene family isolation and provide a collection of measures to help significantly improving the chance of successfully isolating complete multigene families using PCR-based approaches.
Resumo:
A fast method for the identification of recombinant vaccinia viruses directly from individual plaques is described. Plaques are picked, resuspended in PBS-A and processed for PCR using two 'universal' primers. The amplified sequences are analyzed by agarose gel electrophoresis. This procedure allows discrimination between spontaneously arising TK-negative mutants, which do not carry the inserted gene, and the desired TK-negative recombinants resulting from insertional inactivation of the TK gene.