931 resultados para Optimal active power flow
Resumo:
OBJECTIVE: Absent or reverse end-diastolic flow (Doppler II/III) in umbilical artery is correlated with poor perinatal outcome, particularly in intrauterine growth restricted (IUGR) fetuses. The optimal timing of delivery is still controversial. We studied the short- and long-term morbidity and mortality among these children associated with our defined management. STUDY DESIGN: Sixty-nine IUGR fetuses with umbilical Doppler II/III were divided into three groups; Group 1, severe early IUGR, no therapeutic intervention (n = 7); Group 2, fetuses with pathological biophysical profile, immediate delivery (n = 35); Group 3, fetuses for which expectant management had been decided (n = 27). RESULTS: In Group 1, stillbirth was observed after a mean delay of 6.3 days. Group 2 delivered at an average of 31.6 weeks and two died in the neonatal period (6%). In Group 3 after a mean delay of 8 days, average gestational age at delivery was 31.7 weeks; two intra uterine and four perinatal deaths were observed (22%). Long-term follow-up revealed no sequelae in 25/31 (81%) and 15/18 (83%), and major handicap occurred in 1 (3%) and 2 patients (11%), respectively, for Groups 2 and 3. CONCLUSION: Fetal mortality was observed in 22% of this high risk group. After a mean period of follow-up of 5 years, 82% of infants showed no sequelae. According to our management, IUGR associated with umbilical Doppler II or III does not show any benefit from an expectant management in term of long-term morbidity.
Resumo:
The therapeutic efficacy of BAL9141 (formerly Ro 63-9141), a novel cephalosporin with broad in vitro activity that also has activity against methicillin-resistant Staphylococcus aureus (MRSA), was investigated in rats with experimental endocarditis. The test organisms were homogeneously methicillin-resistant S. aureus strain COL transformed with the penicillinase-encoding plasmid pI524 (COL Bla+) and homogeneously methicillin-resistant, penicillinase-producing isolate P8-Hom, selected by serial exposure of parent strain P8 to methicillin. The MICs of BAL9141 for these organisms (2 mg/liter) were low, and BAL9141was bactericidal in time-kill curve studies after 24 h of exposure to either two, four, or eight times the MIC. Rats with experimental endocarditis were treated in a three-arm study with a continuous infusion of BAL5788 (formerly Ro 65-5788), a carbamate prodrug of BAL9141, or with amoxicillin-clavulanate or vancomycin. The rats were administered BAL9141 to obtain steady-state target levels of 20, 10, and 5 mg of per liter or were administered either 1.2 g of amoxicillin-clavulanate (ratio 5:1) every 6 h or 1 g of vancomycin every 12 h at changing flow rates to simulate the pharmacokinetics produced in humans by intermittent intravenous treatment. Treatment was started 12 h after bacterial challenge and lasted for 3 days. BAL9141 was successful in the treatment of experimental endocarditis due to either MRSA isolate COL Bla+ or MRSA isolate P8-Hom at the three targeted steady-state concentrations and sterilized >90% of cardiac vegetations (P < 0.005 versus controls; P < 0.05 versus amoxicillin-clavulanate and vancomycin treatment groups). These promising in vivo results with BAL9141 correlated with the high affinity of the drug for PBP 2a and its stability to penicillinase hydrolysis observed in vitro.
Resumo:
The paper proposes an approach aimed at detecting optimal model parameter combinations to achieve the most representative description of uncertainty in the model performance. A classification problem is posed to find the regions of good fitting models according to the values of a cost function. Support Vector Machine (SVM) classification in the parameter space is applied to decide if a forward model simulation is to be computed for a particular generated model. SVM is particularly designed to tackle classification problems in high-dimensional space in a non-parametric and non-linear way. SVM decision boundaries determine the regions that are subject to the largest uncertainty in the cost function classification, and, therefore, provide guidelines for further iterative exploration of the model space. The proposed approach is illustrated by a synthetic example of fluid flow through porous media, which features highly variable response due to the parameter values' combination.
Resumo:
Flow cytometry (FCM) is emerging as an important tool in environmental microbiology. Although flow cytometry applications have to date largely been restricted to certain specialized fields of microbiology, such as the bacterial cell cycle and marine phytoplankton communities, technical advances in instrumentation and methodology are leading to its increased popularity and extending its range of applications. Here we will focus on a number of recent flow cytometry developments important for addressing questions in environmental microbiology. These include (i) the study of microbial physiology under environmentally relevant conditions, (ii) new methods to identify active microbial populations and to isolate previously uncultured microorganisms, and (iii) the development of high-throughput autofluorescence bioreporter assays
Resumo:
Among numerous magnetic resonance imaging (MRI) techniques, perfusion MRI provides insight into the passage of blood through the brain's vascular network non-invasively. Studying disease models and transgenic mice would intrinsically help understanding the underlying brain functions, cerebrovascular disease and brain disorders. This study evaluates the feasibility of performing continuous arterial spin labeling (CASL) on all cranial arteries for mapping murine cerebral blood flow at 9.4 T. We showed that with an active-detuned two-coil system, a labeling efficiency of 0.82 ± 0.03 was achieved with minimal magnetization transfer residuals in brain. The resulting cerebral blood flow of healthy mouse was 99 ± 26 mL/100g/min, in excellent agreement with other techniques. In conclusion, high magnetic fields deliver high sensitivity and allowing not only CASL but also other MR techniques, i.e. (1)H MRS and diffusion MRI etc, in studying murine brains.
Resumo:
The research performed a sustainability assessment of supply chains of the anchoveta (Engraulis ringens) in Peru. The corresponding fisheries lands 6.5 million t per year, of which <2% is rendered into products for direct human consumption (DHC) and 98% reduced into feed ingredients (fishmeal and fish oil, FMFO), for export. Several industries compete for the anchoveta resources, generating local and global impacts. The need for understanding these dynamics, towards sustainability-improving management and policy recommendations, determined the development of a sustainability assessment framework: 1) characterisation and modelling of the systems under study (with Life Cycle Assessment and other tools) including local aquaculture, 2) calculation of sustainability indicators (i.e. energy efficiency, nutritional value, socio-economic performances), and 3) sustainability comparison of supply chains; definition and comparison of alternative exploitation scenarios. Future exploitation scenarios were defined by combining an ecosystem and a material flow models: continuation of the status quo (Scenario 1), shift towards increased proportion of DHC production (Scenario 2), and radical reduction of the anchoveta harvest in order for other fish stocks to recover and be exploited for DHC (Scenario 3). Scenario 2 was identified as the most sustainable. Management and policy recommendations include improving of: controls for compliance with management measures, sanitary conditions for DHC, landing infrastructure for small- and medium-scale (SMS) fisheries; the development of a national refrigerated distribution chain; and the assignation of flexible tolerances for discards from different DHC processes.
Resumo:
In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its improvement. Once the pixels have been selected, the analyst labels them manually and the process is iterated. Starting with a small and nonoptimal training set, the model itself builds the optimal set of samples which minimizes the classification error. We have applied the proposed algorithms to a variety of remote sensing data, including very high resolution and hyperspectral images, using support vector machines. Experimental results confirm the consistency of the methods. The required number of training samples can be reduced to 10% using the methods proposed, reaching the same level of accuracy as larger data sets. A comparison with a state-of-the-art active learning method, margin sampling, is provided, highlighting advantages of the methods proposed. The effect of spatial resolution and separability of the classes on the quality of the selection of pixels is also discussed.
Resumo:
Hsp70 is a central molecular chaperone that passively prevents protein aggregation and uses the energy of ATP hydrolysis to solubilize, translocate, and mediate the proper refolding of proteins in the cell. Yet, the molecular mechanism by which the active Hsp70 chaperone functions are achieved remains unclear. Here, we show that the bacterial Hsp70 (DnaK) can actively unfold misfolded structures in aggregated polypeptides, leading to gradual disaggregation. We found that the specific unfolding and disaggregation activities of individual DnaK molecules were optimal for large aggregates but dramatically decreased for small aggregates. The active unfolding of the smallest aggregates, leading to proper global refolding, required the cooperative action of several DnaK molecules per misfolded polypeptide. This finding suggests that the unique ATP-fueled locking/unlocking mechanism of the Hsp70 chaperones can recruit random chaperone motions to locally unfold misfolded structures and gradually disentangle stable aggregates into refoldable proteins.
Resumo:
An autoregulation-oriented strategy has been proposed to guide neurocritical therapy toward the optimal cerebral perfusion pressure (CPPOPT). The influence of ventilation changes is, however, unclear. We sought to find out whether short-term moderate hypocapnia (HC) shifts the CPPOPT or affects its detection. Thirty patients with traumatic brain injury (TBI), who required sedation and mechanical ventilation, were studied during 20 min of normocapnia (5.1±0.4 kPa) and 30 min of moderate HC (4.4±3.0 kPa). Monitoring included bilateral transcranial Doppler of the middle cerebral arteries (MCA), invasive arterial blood pressure (ABP), and intracranial pressure (ICP). Mx -autoregulatory index provided a measure for the CPP responsiveness of MCA flow velocity. CPPOPT was assessed as the CPP at which autoregulation (Mx) was working with the maximal efficiency. During normocapnia, CPPOPT (left: 80.65±6.18; right: 79.11±5.84 mm Hg) was detectable in 12 of 30 patients. Moderate HC did not shift this CPPOPT but enabled its detection in another 17 patients (CPPOPT left: 83.94±14.82; right: 85.28±14.73 mm Hg). The detection of CPPOPT was achieved via significantly improved Mx-autoregulatory index and an increase of CPP mean. It appeared that short-term moderate HC augmented the detection of an optimum CPP, and may therefore usefully support CPP-guided therapy in patients with TBI.
Resumo:
The pharmacokinetic and pharmacodynamic properties of nonpeptide angiotensin antagonists in humans are reviewed in this paper. Representatives of this new therapeutic class share common features: lipophilia, intermediate bioavailability, high affinity for plasma proteins and liver metabolism; some have active metabolites. Angiotensin II antagonists block the blood pressure response to exogenous angiotensin II in healthy volunteers, decrease baseline blood pressure in both normal and hypertensive patients, produce a marked rise in plasma renin activity and endogenous angiotensin II and increase renal blood flow without altering glomerular filtration rate. These effects are dose-dependent, but their time course varies between the drugs owing to pharmacokinetic and pharmacodynamic differences. Additionally, the extent of blood pressure reduction is dependent on physiological factors such as sodium and water balance. The characterisation of their pharmacokinetic-pharmacodynamic relationships deserves further refinement for designing optimal therapeutic regimens and proposing dosage adaptations in specific conditions.
Resumo:
Desenvolupament dels models matemàtics necessaris per a controlar de forma òptima la microxarxa existent als laboratoris del Institut de Recerca en Energia de Catalunya. Els algoritmes s'implementaran per tal de simular el comportament i posteriorment es programaran directament sobre els elements de la microxarxa per verificar el seu correcte funcionament.. Desenvolupament dels models matemàtics necessaris per a controlar de forma òptima la microxarxa existent als laboratoris del Institut de Recerca en Energia de Catalunya. Els algoritmes s'implementaran per tal de simular el comportament i posteriorment es programaran directament sobre els elements de la microxarxa per verificar el seu correcte funcionament.
Resumo:
Some methadone maintenance treatment (MMT) programs prescribe inadequate daily methadone doses. Patients complain of withdrawal symptoms and continue illicit opioid use, yet practitioners are reluctant to increase doses above certain arbitrary thresholds. Serum methadone levels (SMLs) may guide practitioners dosing decisions, especially for those patients who have low SMLs despite higher methadone doses. Such variation is due in part to the complexities of methadone metabolism. The medication itself is a racemic (50:50) mixture of 2 enantiomers: an active "R" form and an essentially inactive "S" form. Methadone is metabolized primarily in the liver, by up to five cytochrome P450 isoforms, and individual differences in enzyme activity help explain wide ranges of active R-enantiomer concentrations in patients given identical doses of racemic methadone. Most clinical research studies have used methadone doses of less than 100 mg/day [d] and have not reported corresponding SMLs. New research suggests that doses ranging from 120 mg/d to more than 700 mg/d, with correspondingly higher SMLs, may be optimal for many patients. Each patient presents a unique clinical challenge, and there is no way of prescribing a single best methadone dose to achieve a specific blood level as a "gold standard" for all patients. Clinical signs and patient-reported symptoms of abstinence syndrome, and continuing illicit opioid use, are effective indicators of dose inadequacy. There does not appear to be a maximum daily dose limit when determining what is adequately "enough" methadone in MMT.
Resumo:
Many mechanisms have been proposed to explain why immune responses against human tumor antigens are generally ineffective. For example, tumor cells have been shown to develop active immune evasion mechanisms. Another possibility is that tumor antigens are unable to optimally stimulate tumor-specific T cells. In this study we have used HLA-A2/Melan-A peptide tetramers to directly isolate antigen-specific CD8(+) T cells from tumor-infiltrated lymph nodes. This allowed us to quantify the activation requirements of a representative polyclonal yet monospecific tumor-reactive T cell population. The results obtained from quantitative assays of intracellular Ca(2+) mobilization, TCR down-regulation, cytokine production and induction of effector cell differentiation indicate that the naturally produced Melan-A peptides are weak agonists and are clearly suboptimal for T cell activation. In contrast, optimal T cell activation was obtained by stimulation with recently defined peptide analogues. These findings provide a molecular basis for the low immunogenicity of tumor cells and suggest that patient immunization with full agonist peptide analogues may be essential for stimulation and maintenance of anti-tumor T cell responses in vivo.
Resumo:
Gene expression often cycles between active and inactive states in eukaryotes, yielding variable or noisy gene expression in the short-term, while slow epigenetic changes may lead to silencing or variegated expression. Understanding how cells control these effects will be of paramount importance to construct biological systems with predictable behaviours. Here we find that a human matrix attachment region (MAR) genetic element controls the stability and heritability of gene expression in cell populations. Mathematical modeling indicated that the MAR controls the probability of long-term transitions between active and inactive expression, thus reducing silencing effects and increasing the reactivation of silent genes. Single-cell short-terms assays revealed persistent expression and reduced expression noise in MAR-driven genes, while stochastic burst of expression occurred without this genetic element. The MAR thus confers a more deterministic behavior to an otherwise stochastic process, providing a means towards more reliable expression of engineered genetic systems.
Resumo:
AIMS: We studied the respective added value of the quantitative myocardial blood flow (MBF) and the myocardial flow reserve (MFR) as assessed with (82)Rb positron emission tomography (PET)/CT in predicting major adverse cardiovascular events (MACEs) in patients with suspected myocardial ischaemia. METHODS AND RESULTS: Myocardial perfusion images were analysed semi-quantitatively (SDS, summed difference score) and quantitatively (MBF, MFR) in 351 patients. Follow-up was completed in 335 patients and annualized MACE (cardiac death, myocardial infarction, revascularization, or hospitalization for congestive heart failure or de novo stable angor) rates were analysed with the Kaplan-Meier method in 318 patients after excluding 17 patients with early revascularizations (<60 days). Independent predictors of MACEs were identified by multivariate analysis. During a median follow-up of 624 days (inter-quartile range 540-697), 35 MACEs occurred. An annualized MACE rate was higher in patients with ischaemia (SDS >2) (n = 105) than those without [14% (95% CI = 9.1-22%) vs. 4.5% (2.7-7.4%), P < 0.0001]. The lowest MFR tertile group (MFR <1.8) had the highest MACE rate [16% (11-25%) vs. 2.9% (1.2-7.0%) and 4.3% (2.1-9.0%), P < 0.0001]. Similarly, the lowest stress MBF tertile group (MBF <1.8 mL/min/g) had the highest MACE rate [14% (9.2-22%) vs. 7.3% (4.2-13%) and 1.8% (0.6-5.5%), P = 0.0005]. Quantitation with stress MBF or MFR had a significant independent prognostic power in addition to semi-quantitative findings. The largest added value was conferred by combining stress MBF to SDS. This holds true even for patients without ischaemia. CONCLUSION: Perfusion findings in (82)Rb PET/CT are strong MACE outcome predictors. MBF quantification has an added value allowing further risk stratification in patients with normal and abnormal perfusion images.