997 resultados para Nmr Spectrometry
Resumo:
Electrospray ionization tandem mass spectrometry (ESI-MSn) and the phase solubility method were used to characterize the gas-phase and solution-phase non-covalent complexes between rutin (R) and alpha-, beta- and gamma-cyclodextrins (CDs). The direct correlation between mass spectrometric results and solution-phase behavior is thus revealed. The order of the 1:1 association constants (K-c) of the complexes between R and the three CDs in solution calculated from solubility diagrams is in good agreement with the order of their relative peak intensities and relative collision-induced dissociation (CID) energies of the complexes under the same ESI-MSn condition in both the positive and negative ion modes. Not only the binding stoichiometry but also the relative stabilities and even binding sites of the CD-R complexes can be elucidated by ESI-MSn. The diagnostic fragmentation of CD-R complexes, with a significant contribution of covalent fragmentation of rutin leaving the quercetin (Q) moiety attached to the CDs, provides convincing evidence for the formation of inclusion complexes between R and CDs. The diagnostic fragment ions can be partly confirmed by the complexes between Q and CDs. The gas-phase stability order of the deprotonated CD-R complexes is beta-CD-R > alpha-CD-R > gamma-CD/R; beta-CD seems to bind R more strongly than the other CDs.
Resumo:
The underivatized saponins from Tribulus terrestris and Panax ginseng have been investigated by electrospray ionization multi-stage tandem mass spectrometry (ESI-MSn). In ESI-MS spectra, a predominant [M + Na](+) ion in positive mode and [M - H](-) ion in negative mode were observed for molecular mass information. Multi-stage tandem mass spectrometry of the molecular ions was used for detailed structural analysis. Fragment ions from glycoside cleavage can provide information on the mass of aglycone and the primary sequence and branching of oligosaccharide chains in terms of classes of monosaccharides. Fragment ions from cross-ring cleavages of sugar residues can give some information about the linkages between sugar residues. It was found that different alkali metal-cationized adducts with saponins have different degrees of fragmentation, which may originate from the different affinity of a saponin with each alkali metal in the gas phase. ESI-MSn has been proven to be an effective tool for rapid determination of native saponins in extract mixtures, thus avoiding tedious derivatization and separation steps.
Resumo:
An aluminum/Schiff base complex {[2,2-dimethyl-1,3-propylenebis(3,5-di-tert-butylsalicylideneiminato)](isopropanolato)aluminum(III) (2)} based on a bulky ligand and aluminum isopropoxide was prepared and employed for the stereoselective ring-opening polymerization (ROP) of rac-lactide (rac-LA). The initiator was characterized with nuclear magnetic resonance (NMR), crystal structure measurements, and elemental analysis. It contained a five-coordinate aluminum atom that was trigonal bipyramidal in the solid state according to the crystal structure measurements. The two conformational stereoisomers of 2 exchanged quickly on the NMR scale. Compound 2 polymerized rac-LA into a crystalline polymer that was characterized with H-1 NMR, wide-angle X-ray diffraction, electrospray ionization mass spectrometry, and gel permeation chromatography. The kinetics of the polymerization were first-order in both the monomer and initiator, and there was a linear relationship between the rac-LA conversion and the number-average molecular weight of poly(rac-LA) with a narrow molecular distribution (1.04-1.08). These features showed that the polymerization was well controlled. The high melting temperature (196-201 degreesC) and isotacticity of poly(rac-LA) indicated that complex 2 was a highly stereoselective initiator for the ROP of rac-LA.
Resumo:
A monoethylaluminum Schiff base complex (2) with formula LA1Et (L = N,N'-(2,2-dimethylpropylene)bis(3,5-di-tei-t-butylsalicylideneimine) was synthesized and employed for the stercoselective ring-opening polymerization of rac-lactide (rac-LA). The complex 2 was characterized by nuclear magnetic resonance, crystal structure, and elemental analysis. It contains a five-coordinate aluminum atom with distorted trigonal bipyramidal geornetry in the solid state. In the presence of 2-propanol, 2 showed high stereoselectivity for the polymerization of rac-LA. The polymerization yielded crystalline poly(rac-LA) with a high melting temperature (193-201 degreesC). NMR, differential scanning calorimetry, and wide-angle X-ray diffraction indicated that the poly(rac-LA) was highly isotactic, and a stereocomplex was formed between poly-L- and poly-D-lactide block sequences. By the analysis of electrospray-ionization mass spectrometry and H-1 NMR, the polymer was demonstrated to be endcapped in both terminals with an isopropyl ester and a hydroxy group, respectively. The polymerization was of first order in rac-LA concentration. The relationship between the rac-LA conversion and molecular weights of the polymer was linear so that the polymerization could be well controlled.
Resumo:
Pattern recognition methods were applied to the analysis of 600 MHz H-1 NMR spectra of urine from rats dosed with compounds that induced organ-specific damage in the liver and kidney. Male Wistar rats were separated into groups (n=4) and each was treated with one of following compounds: HgCl2, CCl4, Lu(NO3)(3) and Changle (a kind of rare earth complex mixed with La, Ce, Pr and Nd). Urine samples from the rats dosed with HgCl2, CCl4 and Lu(NO3)(3) were collected over a 24 h time course and the samples from the rats administrated with Changle were gained after 3 months. These samples were measured by 600 MHz NMR spectroscopy. Each spectrum was data-processed to provide 223 intensity-related descriptors of spectra. Urine spectral data corresponding to the time intervals, 0-8 h (HgCl2 and CCl4), 4-8 (Lu(NO3)(3)) h and 90 d (Changle) were analyzed using principal component analysis (PCA). Successful classification of the toxicity and biochemical effects of Lu(NO3)(3) was achieved.
Resumo:
A new method for syntheses of hyperbranched poly(ester-amide)s from commercially available A(2) and CBx type monomers has been developed on the basis of a series of model reactions. The aliphatic and semiaromatic hyperbranched poly(ester-amide)s with multihydroxyl end groups are prepared by in situ thermal polycondensation of intermediates obtained from dicarboxylic acids (A(2)) and multihydroxyl primary amines (CBx) in N,N-dimethylformamide. Analyses of FTIR, H-1 NMR, and C-13 NMR spectra revealed the structures of the polymers obtained. The MALDI-TOF MS of the polymers indicated that cyclization side reactions occurred during polymerization. The hyperbranched poly(ester-amide) s contain configurational isomers observed by C-13 and DEPT C-13 NMR spectroscopy. The DBs of the polymers were determined to be 0.38-0.62 by H-1 NMR or quantitive C-13 NMR and DEPT 135 spectra. These polymers exhibit moderate molecular weights, with broad distributions determined by size exclusion chromatography ( SEC), and possess excellent solubility in a variety of solvents such as N, N- dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran, and ethanol, and display glass-transition temperatures (T(g)s) between -2.3 and 53.2 degrees C, determined by DSC measurements.
Resumo:
The fragmentations of four strychnos alkaloids have been investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) in the positive ion mode. Experiments using multi-stage tandem mass spectrometry (ESI-FT-ICR-MSn) allowed us to obtain precise elemental compositions of product ions at high mass resolution. The experimental data demonstrated that the nitrogen bridge and the coordinated oxygen atom on the nitrogen bridge in the alkaloid compounds were the active sites in the MS2 fragmentations. The loss of CH3 or the OCH3 group in those alkaloids, which have an OCH3 substituent, was the dominant fragmentation mode in the MS3 fragmentations. Logical fragmentation schemes for strychnos alkaloids have been proposed and these should be useful for the identification of these compounds.
Resumo:
Reversible addition-fragmentation chain transfer polymerization has been successfully applied to polymerize acrylonitrile with dibenzyl trithiocarbonate as the chain-transfer agent. The key to success is ascribed to the improvement of the interchange frequency between dormant and active species through the reduction of the activation energy for the fragmentation of the intermediate. The influence of several experimental parameters, such as the molar ratio of the chain-transfer agent to the initiator [azobis(isobutyronitrile)], the molar ratio of the monomer to the chain-transfer agent, and the monomer concentration, on the polymerization kinetics and the molecular weight as well as the polydispersity has been investigated in detail. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and H-1 NMR analyses have confirmed the chain-end functionality of the resultant polymer.
Resumo:
Eighteen triterpenoidic saponins in crude extracts from leaves of Acanthopanax senticous Harms have been investigated by electrospray ionization multi-stage tandem mass spectrometry and high-resolution mass spectrometry. In ESI-MS spectra, predominant [M + Na](+) ions in the positive ion mode have been observed for molecular mass information. Meanwhile, specific structural correlations between these ions are firstly found. The 18 peaks (ions) can be classified into three groups (group D, E, and F with mass increase) with each group including six peaks. There is a mass difference of 132 Da between group D and E for each corresponding peak in turn (for example peak 1 to peak 7), indicating one more pentose residue was attached to saponins in group E than those corresponding in group D. The mass difference of 146 Da between group E and F implies one more deoxy-hexose attached to saponins in group F than those corresponding in group E. The structural correlations of the corresponding ions are confirmed by tandem mass spectrometry and high-re solution mass spectrometry. These structural features can not only facilitate the rapid characterization of the native known saponins in crude plant extracts, thus avoiding tedious derivation and separation of saponins, but also help find novel compounds of the same type in a specific medicinal plant.
Resumo:
Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (11) was then eluted with 10% HNO3 and subsequently reduced by NaBH4 to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min(-1) sample loading rate. The detection limit was 0.2 ng L-1 and much lower than that of conventional method (around 15.8 ng L-1). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L-1 of Hg and the linear working curve is from 20 to 2000 ng L-1 (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory.
Resumo:
The subacute toxicity of aristolochic acid (AA) was investigated by H-1 NMR spectroscopic and pattern recognition (PR)-based metabonomic methods. Model toxins were used to enable comparisons of the urinary profiles from rats treated with known toxicants and AA at various time intervals. Urinary H-1 NMR spectra were data-processed and analyzed by pattern recognition method. The result of visual comparison of the spectra showed that AA caused a renal proximal tubular and papillary lesion and a slight hepatic impair. Pattern recognition analysis indicated that the renal proximal tubule lesion was the main damage induced by AA, and the renal toxicity induced by AA was a progressive course with the accumulation of dosage by monitoring the toxicological processes from onset, development and part-recovery. These results were also supported by the conventional clinical biochemical parameters.
Resumo:
A general procedure to determine the absolute configuration of cyclic secondary amines with Mosher's NMR method is demonstrated, with assignment of absolute configuration of isoanabasine as an example. Each Mosher amide can adopt two stable conformations (named rotamers) caused by hindered rotation around amide C-N bond. Via a three-step structural analysis of four rotamers, the absolute configuration of (-)-isoanabasine is deduced to be (R) on the basis of Newman projections, which makes it easy to understand and clarify the application of Mosher's method to cyclic secondary amines. Furthermore, it was observed that there was an unexpected ratio of rotamers of Mosher amide derived from (R)-isoanabasine and (R)-Mosher acid. This phenomenon implied that it is necessary to distinguish the predominant rotamer from the minor one prior to determining the absolute configuration while using this technique.
Resumo:
The determination of Nb and Ta in Nb-Ta minerals was accomplished by slurry nebulization inductively coupled plasma optical emission spectrometry (ICP-OES), using a clog-free V-groove ceramic nebulizer. Samples were first wet-ground to appropriate particle sizes with narrow size distribution and 90% of the particles in the slurry were smaller than 2.32 mu m in diameter. Subsamples were then dispersed in pH 9 aqueous solutions, and agitated in an ultrasonic bath for 15 min prior to analysis. Due to the lack of slurry standards matching well with the samples, calibration was simply carried out using aqueous solution standards. Results were compared with those obtained from a conventional fusion decomposition procedure and acid digestion procedures and a good agreement between the measured and referred values was obtained. The technique provided a good alternative for the rapid determination of Nb and/or Ta in their corresponding minerals.
Resumo:
A novel prenylflavonol glycoside, named acetylicariin, has been isolated from the aerial parts of Epimedium koreanum Nakai. The structure has been identified by electrospray ionization multi-stage tandem mass spectrometry (ESI-MSn) and other chemical evidence, which has been elucidated as 8-prenylkaempferol-4'-methoxyl-3-O-alpha-L-rhamnopyranosyl-7-O-beta-D-(2''-O-acetyl)glucopyranoside.
Resumo:
Electrospray ionization mass spectrometry (ESI-MS) was applied simultaneously in determining norditerpenoid alkaloids from the roots of Aconitum sinomantanum Nakai ( RAS) based on molecular mass information. The tandem mass spectra (ESI-MSn) provided the alkaloidal structural information, through which the existence of these alkaloids was further confirmed. Accordingly, six known norditerpenoid alkaloids were simultaneously determined on the basis of their ESI-MSn spectra. Furthermore, based on the diagnostic fragmentation pathways of alkaloidal MSn, a rapid method for direct detection and characterization of alkaloids from an ethanolic extract of RAS was described.