805 resultados para Mobile Multimedia data
Resumo:
Any other technology has never affected daily life at this level and witnessed as speedy adaptation as the mobile phone. At the same time, mobile media has developed to be a serious marketing tool for all kinds of businesses, and the industry has grown explosively in recent years. The objective of this thesis is to inspect the mobile marketing process of an international event. This thesis is a qualitative case study. The chosen case for this thesis is the mobile marketing process of Falun2015 FIS Nordic World Ski Championships due to researcher’s interest on the topic and contacts to the people around the event. The empirical findings were acquired by conducting two interviews with three experts from the case organisation and its partner organisation. The interviews were performed as semi-structured interviews utilising the themes arising from the chosen theoretical framework. The framework distinguished six phases in the process: (i) campaign initiation, (ii) campaign design, (iii) campaign creation, (iv) permission management, (v) delivery, and (vi) evaluation and analysis. Phases one and five were not examined in this thesis because campaign initiation was not purely seen as part of the campaign implementation, and investigating phase five would have required a very technical viewpoint to the study. In addition to the interviews, some pre-established documents were exploited as a supporting data. The empirical findings of this thesis mainly follow the theoretical framework utilised. However, some modifications to the model could be made mainly related to the order of different phases. In the revised model, the actions are categorised depending on the time they should be conducted, i.e. before, during or after the event. Regardless of the categorisation, the phases can be in different order and overlapping. In addition, the business network was highly emphasised by the empirical findings and is thus added to the modified model. Five managerial recommendations can be concluded from the empirical findings of this thesis: (i) the importance of a business network should be highly valued in a mobile marketing process; (ii) clear goals should be defined for mobile marketing actions in order to make sure that everyone involved is aware them; (iii) interactivity should be perceived as part of a mobile marketing communication; (iv) enough time should be allowed for the development of a mobile marketing process in order to exploit all the potential it can offer; and (v) attention should be paid to measuring and analysing matters that are of relevance
Resumo:
Mestrado em Ciências Empresariais
Resumo:
This paper reviews current research works at the authors’ Institutions to illustrate how mobile robotics and related technologies can be used to enhance economical fruition, control, protection and social impact of the cultural heritage. Robots allow experiencing on-line, from remote locations, tours at museums, archaeological areas and monuments. These solutions avoid travelling costs, increase beyond actual limits the number of simultaneous visitors, and prevent possible damages that can arise by over-exploitation of fragile environments. The same tools can be used for exploration and monitoring of cultural artifacts located in difficult to reach or dangerous areas. Examples are provided by the use of underwater robots in the exploration of deeply submerged archaeological areas. Besides, technologies commonly employed in robotics can be used to help exploring, monitoring and preserving cultural artifacts. Examples are provided by the development of procedures for data acquisition and mapping and by object recognition and monitoring algorithms.
Resumo:
El presente proyecto se embarca en la investigación de los conceptos que están asociados con las nuevas tecnologías en el campo de las publicaciones digitales, en los procesos que se siguen para desarrollar contenido en los dispositivos móviles enmarcado en un contexto actual. Además de aprovechar estos medios alternativos como opciones de distribución de contenido informativo de productos o servicios de una empresa. También se busca presentar, al diseñador, alternativas viables que contribuyan al desarrollo de productos multimedia, de una manera más asequible y no limitada por conceptos, ni herramientas desvinculadas con nuestra área profesional. La meta es la consecución de un prototipo de catálogo digital que pueda ser presentado al cliente como componente innovador y nuevo recurso para la empresa Ecuavida
Resumo:
Mobile sensor networks have unique advantages compared with wireless sensor networks. The mobility enables mobile sensors to flexibly reconfigure themselves to meet sensing requirements. In this dissertation, an adaptive sampling method for mobile sensor networks is presented. Based on the consideration of sensing resource constraints, computing abilities, and onboard energy limitations, the adaptive sampling method follows a down sampling scheme, which could reduce the total number of measurements, and lower sampling cost. Compressive sensing is a recently developed down sampling method, using a small number of randomly distributed measurements for signal reconstruction. However, original signals cannot be reconstructed using condensed measurements, as addressed by Shannon Sampling Theory. Measurements have to be processed under a sparse domain, and convex optimization methods should be applied to reconstruct original signals. Restricted isometry property would guarantee signals can be recovered with little information loss. While compressive sensing could effectively lower sampling cost, signal reconstruction is still a great research challenge. Compressive sensing always collects random measurements, whose information amount cannot be determined in prior. If each measurement is optimized as the most informative measurement, the reconstruction performance can perform much better. Based on the above consideration, this dissertation is focusing on an adaptive sampling approach, which could find the most informative measurements in unknown environments and reconstruct original signals. With mobile sensors, measurements are collect sequentially, giving the chance to uniquely optimize each of them. When mobile sensors are about to collect a new measurement from the surrounding environments, existing information is shared among networked sensors so that each sensor would have a global view of the entire environment. Shared information is analyzed under Haar Wavelet domain, under which most nature signals appear sparse, to infer a model of the environments. The most informative measurements can be determined by optimizing model parameters. As a result, all the measurements collected by the mobile sensor network are the most informative measurements given existing information, and a perfect reconstruction would be expected. To present the adaptive sampling method, a series of research issues will be addressed, including measurement evaluation and collection, mobile network establishment, data fusion, sensor motion, signal reconstruction, etc. Two dimensional scalar field will be reconstructed using the method proposed. Both single mobile sensors and mobile sensor networks will be deployed in the environment, and reconstruction performance of both will be compared.In addition, a particular mobile sensor, a quadrotor UAV is developed, so that the adaptive sampling method can be used in three dimensional scenarios.
Resumo:
To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.
Resumo:
Nowadays words like Smart City, Internet of Things, Environmental Awareness surround us with the growing interest of Computer Science and Engineering communities. Services supporting these paradigms are definitely based on large amounts of sensed data, which, once obtained and gathered, need to be analyzed in order to build maps, infer patterns, extract useful information. Everything is done in order to achieve a better quality of life. Traditional sensing techniques, like Wired or Wireless Sensor Network, need an intensive usage of distributed sensors to acquire real-world conditions. We propose SenSquare, a Crowdsensing approach based on smartphones and a central coordination server for time-and-space homogeneous data collecting. SenSquare relies on technologies such as CoAP lightweight protocol, Geofencing and the Military Grid Reference System.
Resumo:
Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as f-test is performed during each node’s split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.
Resumo:
In this paper, the problem of semantic place categorization in mobile robotics is addressed by considering a time-based probabilistic approach called dynamic Bayesian mixture model (DBMM), which is an improved variation of the dynamic Bayesian network. More specifically, multi-class semantic classification is performed by a DBMM composed of a mixture of heterogeneous base classifiers, using geometrical features computed from 2D laserscanner data, where the sensor is mounted on-board a moving robot operating indoors. Besides its capability to combine different probabilistic classifiers, the DBMM approach also incorporates time-based (dynamic) inferences in the form of previous class-conditional probabilities and priors. Extensive experiments were carried out on publicly available benchmark datasets, highlighting the influence of the number of time-slices and the effect of additive smoothing on the classification performance of the proposed approach. Reported results, under different scenarios and conditions, show the effectiveness and competitive performance of the DBMM.
Resumo:
BACKGROUND Integrons are found in hundreds of environmental bacterial species, but are mainly known as the agents responsible for the capture and spread of antibiotic-resistance determinants between Gram-negative pathogens. The SOS response is a regulatory network under control of the repressor protein LexA targeted at addressing DNA damage, thus promoting genetic variation in times of stress. We recently reported a direct link between the SOS response and the expression of integron integrases in Vibrio cholerae and a plasmid-borne class 1 mobile integron. SOS regulation enhances cassette swapping and capture in stressful conditions, while freezing the integron in steady environments. We conducted a systematic study of available integron integrase promoter sequences to analyze the extent of this relationship across the Bacteria domain. RESULTS Our results showed that LexA controls the expression of a large fraction of integron integrases by binding to Escherichia coli-like LexA binding sites. In addition, the results provide experimental validation of LexA control of the integrase gene for another Vibrio chromosomal integron and for a multiresistance plasmid harboring two integrons. There was a significant correlation between lack of LexA control and predicted inactivation of integrase genes, even though experimental evidence also indicates that LexA regulation may be lost to enhance expression of integron cassettes. CONCLUSIONS Ancestral-state reconstruction on an integron integrase phylogeny led us to conclude that the ancestral integron was already regulated by LexA. The data also indicated that SOS regulation has been actively preserved in mobile integrons and large chromosomal integrons, suggesting that unregulated integrase activity is selected against. Nonetheless, additional adaptations have probably arisen to cope with unregulated integrase activity. Identifying them may be fundamental in deciphering the uneven distribution of integrons in the Bacteria domain.
Resumo:
With increasing concerns about the impact of global warming on human life, policy makers around the world and researchers have sought for technological solutions that have the potential to attenuate this process. This thesis describes the design and evaluation of an information appliance that aims to increase the use of public transportation. We developed a mobile glanceable display that, being aware of the user’s transportation routines, provides awareness cues about bus arrival time, grounded upon the vision of Ambient Intelligence. We present the design process we followed, from ideation to building a prototype and conducting a field study, and conclude with a set of guidelines for the design of relevant personal information systems. More specifically we seek to test the following hypotheses: 1) That the tangible prototype that provides ambient cues will be used more frequently than a similar purpose mobile app, 2) That the tangible prototype will reduce the waiting time at the bus stop, 3) That the tangible prototype will result to reduced anxiety on passengers, 4) That the tangible prototype will result to an increase in the perceived reliability of the transit service, 5) That the tangible prototype will enhance users’ efficiency in reading the bus schedules and 6) That the tangible prototype will make individuals more likely to use public transit. In a field study, we compare the tangible prototype against the mobile app and a control condition where participants were given no external support in obtaining bus arrival information, other than their existing routines. Using qualitative and quantitative data, we test the aforementioned hypotheses and explore users’ reactions to the prototype we developed.
Resumo:
Effective and efficient implementation of intelligent and/or recently emerged networked manufacturing systems require an enterprise level integration. The networked manufacturing offers several advantages in the current competitive atmosphere by way to reduce, by shortening manufacturing cycle time and maintaining the production flexibility thereby achieving several feasible process plans. The first step in this direction is to integrate manufacturing functions such as process planning and scheduling for multi-jobs in a network based manufacturing system. It is difficult to determine a proper plan that meets conflicting objectives simultaneously. This paper describes a mobile-agent based negotiation approach to integrate manufacturing functions in a distributed manner; and its fundamental framework and functions are presented. Moreover, ontology has been constructed by using the Protégé software which possesses the flexibility to convert knowledge into Extensible Markup Language (XML) schema of Web Ontology Language (OWL) documents. The generated XML schemas have been used to transfer information throughout the manufacturing network for the intelligent interoperable integration of product data models and manufacturing resources. To validate the feasibility of the proposed approach, an illustrative example along with varied production environments that includes production demand fluctuations is presented and compared the proposed approach performance and its effectiveness with evolutionary algorithm based Hybrid Dynamic-DNA (HD-DNA) algorithm. The results show that the proposed scheme is very effective and reasonably acceptable for integration of manufacturing functions.
Resumo:
Interactions in mobile devices normally happen in an explicit manner, which means that they are initiated by the users. Yet, users are typically unaware that they also interact implicitly with their devices. For instance, our hand pose changes naturally when we type text messages. Whilst the touchscreen captures finger touches, hand movements during this interaction however are unused. If this implicit hand movement is observed, it can be used as additional information to support or to enhance the users’ text entry experience. This thesis investigates how implicit sensing can be used to improve existing, standard interaction technique qualities. In particular, this thesis looks into enhancing front-of-device interaction through back-of-device and hand movement implicit sensing. We propose the investigation through machine learning techniques. We look into problems on how sensor data via implicit sensing can be used to predict a certain aspect of an interaction. For instance, one of the questions that this thesis attempts to answer is whether hand movement during a touch targeting task correlates with the touch position. This is a complex relationship to understand but can be best explained through machine learning. Using machine learning as a tool, such correlation can be measured, quantified, understood and used to make predictions on future touch position. Furthermore, this thesis also evaluates the predictive power of the sensor data. We show this through a number of studies. In Chapter 5 we show that probabilistic modelling of sensor inputs and recorded touch locations can be used to predict the general area of future touches on touchscreen. In Chapter 7, using SVM classifiers, we show that data from implicit sensing from general mobile interactions is user-specific. This can be used to identify users implicitly. In Chapter 6, we also show that touch interaction errors can be detected from sensor data. In our experiment, we show that there are sufficient distinguishable patterns between normal interaction signals and signals that are strongly correlated with interaction error. In all studies, we show that performance gain can be achieved by combining sensor inputs.
Resumo:
With increasing concerns about the impact of global warming on human life, policy makers around the world and researchers have sought for technological solutions that have the potential to attenuate this process. This thesis describes the design and evaluation of an information appliance that aims to increase the use of public transportation. We developed a mobile glanceable display that, being aware of the user’s transportation routines, provides awareness cues about bus arrival time, grounded upon the vision of Ambient Intelligence. We present the design process we followed, from ideation to building a prototype and conducting a field study, and conclude with a set of guidelines for the design of relevant personal information systems. More specifically we seek to test the following hypotheses: 1) That the tangible prototype that provides ambient cues will be used more frequently than a similar purpose mobile app, 2) That the tangible prototype will reduce the waiting time at the bus stop, 3) That the tangible prototype will result to reduced anxiety on passengers, 4) That the tangible prototype will result to an increase in the perceived reliability of the transit service, 5) That the tangible prototype will enhance users’ efficiency in reading the bus schedules and 6) That the tangible prototype will make individuals more likely to use public transit. In a field study, we compare the tangible prototype against the mobile app and a control condition where participants were given no external support in obtaining bus arrival information, other than their existing routines. Using qualitative and quantitative data, we test the aforementioned hypotheses and explore users’ reactions to the prototype we developed.