716 resultados para Mechanical drawing.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the partial oxypropylation of filter paper cellulose fibers, employing two different basic catalyst, viz., potassium hydroxide and 1,4-diazabicyclo [2.2.2] octane, to activate the hydroxyl groups of the polysaccharide and thus provide the anionic initiation sites for the ""grafting-from"" polymerization of propylene oxide. The success of this chemical modification was assessed by FTIR spectroscopy, X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis and contact angle measurements. The study of the role of the catalyst employed on the extent of the modification and on the mechanical properties of the ensuing composites, after hot pressing, showed that both the Bronsted and the Lewis base gave satisfactory results, without any marked difference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mg-Ni metastable alloys (with amorphous or nanocrystalline structures) are promising candidates for anode application in nickel-metal hydride rechargeable batteries due to its large hydrogen absorbing capacity, low weight, availability, and relative low price. In spite of these interesting features, improvement on the cycle life performance must be achieved to allow its application in commercial products. In the present paper, the effect of mechanical coating of a Mg-50 at.% Ni alloy with Ni and Ni-5 at.% Al on the structure, powder morphology, and electrochemical properties is investigated. The coating additives, Mg-Ni alloy and resulting nanocomposites (i.e., Mg-Ni alloy + additive) were investigated by means of X-ray diffraction and scanning electron microscopy. The Mg-Ni alloy and nanocomposites were submitted to galvanostatic cycles of charge and discharge to evaluate their electrode performances. The mechanical coating with Ni and Ni-5% Al increased the maximum discharge capacity of the Mg-Ni alloy from of 221 to 257 and 273 mA h g(-1), respectively. Improvement on the cycle life performance was also achieved by mechanical coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The (bio)degradation of polyolefins can be accelerated by modifying the level of crystallinity or by incorporation of carbonyl groups by adding pro-oxidants to masterbatches or through exposure to ultraviolet irradiation. In this work we sought to improve the degradation of PP by adding cobalt, calcium or magnesium stearate to Ecoflex(R), PP or Ecoflex(R)/PP blends. The effect of the pro-oxidants on biodegradability was assessed by examining the mechanical properties and fluidity of the polymers. PP had higher values for tensile strength at break and Young`s modulus than Ecoflex(R), and the latter had little influence on the properties of PP in Ecoflex(R)/PP blends. However, the presence of pro-oxidants (except for calcium) reduced these properties. All of the pro-oxidants enhanced the fluidity of PP, a phenomenon that facilitated polymer degradation at high temperatures. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to evaluate the effect of the storage time on the thermal properties of triethylene glycol dimethacrylate/2,2-bis[4-(2-hydroxy-3-methacryloxy-prop-1-oxy)-phenyl]propane bisphenyl-alpha-glycidyl ether dimethacrylate (TB) copolymers used in formulations of dental resins after photopolymerization. The TB copolymers were prepared by photopolymerization with an Ultrablue IS light-emitting diode, stored in the dark for 160 days at 37 degrees C, and characterized with differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and Fourier transform infrared spectroscopy with attenuated total reflection. DSC curves indicated the presence of an exothermic peak, confirming that the reaction was not completed during the photopolymerization process. This exothermic peak became smaller as a function of the storage time and was shifted at higher temperatures. In DMA studies, a plot of the loss tangent versus the temperature initially showed the presence of two well-defined peaks. The presence of both peaks confirmed the presence of residual monomers that were not converted during the photopolymerization process. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 112: 679-684, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sealed gas filled flat plate solar collectors will have stresses in the material since volume and pressure varies in the gas when the temperature changes. Several geometries were analyzed and it could be seen that it is possible reducing the stresses and improve the safety factor of the weakest point in the construction by using larger area and/or reducing the distance between glass and absorber and/or change width and height relationship so the tubes are getting longer. Further it could be shown that the safety factor won't always get improved with reinforcements. It is so because when an already strong part of the collector gets reinforced it will expose weaker parts for higher stresses. The finite element method was used for finding out the stresses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cemented carbide is today the most frequently used drawing die material in steel wire drawing applications. This is mainly due to the possibility to obtain a broad combination of hardness and toughness thus meeting the requirements concerning strength, crack resistance and wear resistance set by the wire drawing process. However, the increasing cost of cemented carbide in combination with the possibility to increase the wear resistance of steel through the deposition of wear resistant CVD and PVD coatings have enhanced the interest to replace cemented carbide drawing dies with CVD and PVD coated steel wire drawing dies. In the present study, the possibility to replace cemented carbide wire drawing dies with CVD and PVD coated steel drawing dies have been investigated by tribological characterisation, i.e. pin-on-disc and scratch testing, in combination with post-test observations of the tribo surfaces using scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D surface profilometry. Based on the results obtained, CVD and PVD coatings aimed to provide improved tribological performance of steel wire drawing dies should display a smooth surface topography, a high wear resistance, a high fracture toughness (i.e. a high cracking and chipping resistance) and intrinsic low friction properties in contact with the wire material. Also, the steel substrate used must display a sufficient load carrying capacity and resistance to thermal softening. Of the CVD and PVD coatings evaluated in the tribological tests, a CVD TiC and a PVD CrC/C coating displayed the most promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis focuses on the tribological performance of tool surfaces in two steel working operations, namely wire drawing and hot rolling. In all forming operations dimensions and surface finish of the products are of utmost importance. Forming basically includes three parts – forming conditions excluded – that may be changed; work material, tool and (possibly) lubricant. In the interface between work material and tool, the conditions are very aggressive with – generally or locally – high temperatures and pressures. The surfaces will be worn in various ways and this will change the conditions in the process. Consequently, the surface finish as well as the dimensions of the formed product may change and in the end, the product will not fulfil the requirements of the customer. Therefore, research and development in regard to wear, and consequently tribology, of the forming tools is of great interest. The investigations of wire drawing dies focus on coating adhesion/cohesion, surface characteristics and material transfer onto the coated steel both in laboratory scale as well as in the wire drawing process. Results show that it in wire drawing is possible to enhance the tribological performance of drawing dies by using a lubricant together with a steel substrate coated by a polished, dual-layer coating containing both hard and friction-lowering layers. The investigations of hot rolling work rolls focus on microstructure and hardness as well as cracking- and surface characteristics in both laboratory scale and in the hot strip mill. Results show that an ideal hot work roll material should be made up of a matrix with high hardness and a large amount of complex, hard carbides evenly distributed in the microstructure. The surface failure mechanisms of work rolls are very complex involving plastic deformation, abrasive wear, adhesive wear, mechanical and thermal induced cracking, material transfer and oxidation. This knowledge may be used to develop new tools with higher wear resistance giving better performance, lower costs and lower environmental impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A mobile device test battery, consisting of a patient diary collection section with disease-related questions and a fine motor test section (including spiral drawing tasks), was used by 65 patients with advanced Parkinson's disease (PD)(treated with intraduodenal levodopa/carbidopa gel infusion, Duodopa®, or candidates for this treatment) on 10439 test occasions in their home environments. On each occasion, patients traced three pre-drawn Archimedes spirals using an ergonomic stylus and self-assessed their motor function on a global Treatment Response Scale (TRS) ranging from -3 = very 'off' to 0 = 'on' to +3 = very dyskinetic. The spirals were processed by a computer-based method that generates a "spiral score" representing the PD-related drawing impairment. The scale for the score was based on a modified Bain & Findley rating scale in the range from 0 = no impairment to 5 = moderate impairment to 10 = extremely severe impairment. Objective: To analyze the test battery data for the purpose to find differences in spiral drawing performance of PD patients in relation to their self-assessments of motor function. Methods: Three motor states were used in the analysis; OFF state (including moderate and very 'off'), ON state ('on') and a dyskinetic (DYS) state (moderate and very dyskinetic). In order to avoid the problem of multiple test occasions per patient, 200 random samples of single test occasions per patient were drawn. One-way analysis of variance, ANOVA, test followed by Tukey multiple comparisons test was used to test if mean values of spiral test parameters, i.e. the spiral score and drawing completion times (in seconds), were different among the three motor states. Statistical significance was set at p<0.05. To investigate changes in the spiral score over the time-of-day test sessions for the three motor states, plots of statistical summaries were inspected. Results: The mean spiral score differed significantly across the three self-assessed motor states (p<0.001, ANOVA test). Tukey post-hoc comparisons indicate that the mean spiral score (mean ± SD; [95% CI for mean]) in DYS state (5.2 ± 1.8; [5.12, 5.28]) was higher than the mean spiral score in OFF (4.3 ± 1.7; [4.22, 4.37]) and ON (4.2 ± 1.7; [4.17, 4.29]) states. The mean spiral score was also significantly different among individual TRS values of slightly 'off' (4.02 ± 1.63), 'on' (4.07 ± 1.65) and slightly dyskinetic (4.6 ± 1.71), (p<0.001). There were no differences in drawing completion times among the three motor states (p=0.509). In the OFF and ON states, patients drew slightly more impaired spirals in the afternoon whereas in the DYS state the spiral drawing performance was more impaired in the morning. Conclusion: It was found that when patients considered themselves as being dyskinetic spiral drawing was more impaired (nearly one unit change in a 0-10 scale) compared to when they considered themselves as being 'off' and 'on'. The spiral drawing at patients that self-assessed their motor state as dyskinetic was slightly more impaired in the morning hours, between 8 and 12 o'clock, a situation possibly caused by the morning dose effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new test method based on multipass scratch testing has been developed for evaluating the mechanical and tribological properties of thin, hard coatings. The proposed test method uses a pin-on-disc tribometer and during testing a Rockwell C diamond stylus is used as the “pin” and loaded against the rotating coated sample. The influence of normal load on the number of cycles to coating damage is investigated and the resulting coating damage mechanisms are evaluated by posttest scanning electron microscopy. The present study presents the test method by evaluating the performance of Ti0.86Si0.14N, Ti0.34Al0.66N, and (Al0.7Cr0.3)2O3 coatings deposited by cathodic arc evaporation on cemented carbide inserts. The results show that the test method is quick, simple, and reproducible and can preferably be used to obtain relevant data concerning the fatigue, wear, chipping, and spalling characteristics of different coating-substrate composites. The test method can be used as a virtually nondestructive test and, for example, be used to evaluate the fatigue and wear resistance as well as the cohesive and adhesive interfacial strength of coated cemented carbide inserts prior to cutting tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis focuses on characterisation of microstructure and the resulting mechanical and tribological properties of CVD and PVD coatings used in metal cutting applications. These thin and hard coatings are designed to improve the tribological performance of cutting tools which in metal cutting operations may result in improved cutting performance, lower energy consumption, lower production costs and lower impact on the environment.  In order to increase the understanding of the tribological behaviour of the coating systems a number of friction and wear tests have been performed and evaluated by post-test microscopy and surface analysis. Much of the work has focused on coating cohesive and adhesive strength, surface fatigue resistance, abrasive wear resistance and friction and wear behaviour under sliding contact and metal cutting conditions. The results show that the CVD deposition of accurate crystallographic phases, e.g. α-Al2O3 rather than κ-Al2O3, textures and multilayer structures can increase the wear resistance of Al2O3. However, the characteristics of the interfaces, e.g. topography as well as interfacial porosity, have a strong impact on coating adhesion and consequently on the resulting properties.  Through the deposition of well designed bonding and template layer structures the above problems may be eliminated. Also, the presence of macro-particles in PVD coatings may have a significant impact on the interfacial adhesive strength, increasing the tendency to coating spalling and lowering the surface fatigue resistance, as well as increasing the friction in sliding contacts. Finally, the CVD-Al2O3 coating topography influences the contact conditions in sliding as well as in metal cutting. In summary, the work illuminates the importance of understanding the relationships between deposition process parameters, composition and microstructure, resulting properties and tribological performance of CVD and PVD coatings and how this knowledge can be used to develop the coating materials of tomorrow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

My project as a Senior Scholar has been the study of the human figure through drawing and sculpture. I have worked directly from the model in order to understand the form and structure of the human body. The result of this concentrated study has been a sharpened sense of vision and an increased confidence in the use of materials for both two and three-dimensional representation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is focused on understanding the most important issues originated from the current Brazilian productive restructuring and its impacts on the formation of a new unionism style, especially the pattern followed by the Workers Union's Congress (CUT). From the processes that have been developing in the automotive factories of the ABC region, as well as inside the unions, we can say that: (i) the participation of the unions in the elaboration and modificaton of the productive processes and the labor organization has been increasing; (ii) this trend has been spreading very quickly inside the workers union movement linked to the CUT, strenghtening the inflexion taken by this Congress since the beginning of the nineties; (iii) the negotiations and its outcomes are drawing away from an approach that seeks to establish a mechanical correspondance between production flexibilization measures and the implementation of certain industrial relations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past two decades there has been a profusion of empirical studies of organizational design and its relationship to efficiency, productivity and flexibility of an organization. In parallel, there has been a wide range of studies about innovation management in different kind of industries and firms. However, with some exceptions, the organizational and innovation management bodies of literature tend to examine the issues of organizational design and innovation management individually, mainly in the context of large firms operating at the technological frontier. There seems to be a scarcity of empirical studies that bring together organizational design and innovation and examine them empirically and over time in the context of small and medium sized enterprises. This dissertation seeks to provide a small contribution in that direction. This dissertation examines the dynamic relationship between organizational design and innovation. This relationship is examined on the basis of a single-case design in a medium sized mechanical engineering company in Germany. The covered time period ranges from 1958 until 2009, although the actual focus falls on the recent past. This dissertation draws on first-hand qualitative empirical evidence gathered through extensive field work. The main findings are: 1. There is always a bundle of organizational dimensions which impacts innovation. These main organizational design dimensions are: (1) Strategy & Leadership, (2) Resources & Capabilities, (3) Structure, (4) Culture, (5) Networks & Partnerships, (6) Processes and (7) Knowledge Management. However, the importance of the different organizational design dimensions changes over time. While for example for the production of simple, standardized parts, a simple organizational design was appropriate, the company needed to have a more advanced organizational design in order to be able to produce customized, complex parts with high quality. Hence the technological maturity of a company is related to its organizational maturity. 2. The introduction of innovations of the analyzed company were highly dependent on organizational conditions which enabled their introduction. The results of the long term case study show, that some innovations would not have been introduced successfully if the organizational elements like for example training and qualification, the build of network and partnerships or the acquisition of appropriate resources and capabilities, were not in place. Hence it can be concluded, that organizational design is an enabling factor for innovation. These findings contribute to advance our understanding of the complex relationship between organizational design and innovation. This highlights the growing importance of a comprehensive, innovation stimulating organizational design of companies. The results suggest to managers that innovation is not only dependent on a single organizational factor but on the appropriate, comprehensive design of the organization. Hence manager should consider to review regularly the design of their organizations in order to maintain a innovation stimulating environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the world evolves, organizations are becoming more and more complex, and the need to understand that complexity is increasing as well. With this demand, arises organizational engineering, which is a subject that emerged with the purpose to make organizations easier to understand, by putting in practice the concept of organizational self-awareness, which means that that the collaborators who are part of an organization, need to understand it and know what their role in it is. The DEMO methodology (Design Engineering Methodology for Organizations), came up with the purpose of representing these organizations’ self-awareness, through the definition and creation of consistent and coherent diagrams. Semantic wikis have features that can help in enterprise modelling. UEAOM (Universal Enterprise Adaptive Organization Model) is a model that allows the specification and dynamic evolution of languages, meta-models, models, and their representations as diagrams and tables. In this project, it was implemented a system based on UEAOM, and Semantic Media Wiki which allows a graphical creation and edition of diagrams. UEAOM can be divided into the meta-modeling level where a language is defined, and the modelling level where instances of classes of that language are created. The system we developed focuses on the modeling level, but will takes as a basis the project that focuses on meta-modeling. The DEMO language was used as an example for the implementation and tests of a graphical editor, based in web technologies and SVG, integrated with SemanticMediaWiki to allow an intuitive, coherent and consistent navigation and editing of organization diagrams.