984 resultados para Maternal behavior


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tert-butyl 2,2-bis(2,4-dinitrophenyl)ethanoate was prepared from the ethanolic solution of 1-chloro-2,4-dinitrobenzene, tert-butyl 3-oxobutanoate and triethylamine. Acetyl group in tert-butyl 3-oxobutanoate has cleaved off during the formation of the title molecule. UV-VIS, IR, 1H NMR, 13C NMR, Proton-Proton COSY data and single crystal XRD results support the proposed structure. Flammability test, impact sensitivity test and TG/DTA studies at different heating rates on the synthesized molecule imply that it is an insensitive high energy density material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphology of nanocrystalline Co3O4 synthesized through microwave irradiation of a solution of a cobalt complex is found to depend reproducibly on the conditions of synthesis and, in particular, on the composition of the solvent used. Despite the rapidity of the process, oriented aggregation occurs under certain conditions, depending on solvent composition. Annealing the oriented samples leads to microstructures with significant porosity, rendering the material suitable as electrodes for electrochemical capacitors. Electrochemical analysis of the oxide samples was carried out in 0.1M Na2SO4 electrolyte vs. Ag/AgCl electrode. A stable specific capacitance of 221 F/g was measured for a meso-porous sample displaying oriented aggregation. Stability of these oxide materials were checked for longer charge-discharge cycling. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.002210jes] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, Na0.33V2O5 center dot 1.5H(2)O nanorings/nanorods and Na0.33V2O5 center dot 1.5H(2)O/reduced graphene oxide (RGO) composites have been prepared through a facile hydrothermal route in acidic medium at 200 degrees C for 2 days. The hydrothermally derived products have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, UV-Visible spectroscopy, Thermogravimetric analysis (TGA), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and electrochemical discharge-charge cycling in lithium ion battery. XRD pattern exhibits the layered structure of Na0.33V2O5 center dot 1.5H(2)O and the composite shows the presence of RGO at 2 theta = 25.8 degrees. FTIR spectrum shows that the band at 760 cm(-1) could be assigned to a V-OH2 stretching mode due to coordinated water. Raman spectrum shows that the band at 264 cm(-1) is due to the presence of water molecules between the layers. FESEM/TEM micrographs reveal that the products consist of nanorings of inner diameter 5 mu m and thickness of the ring is found to be 200-300 nm. Addition of exfoliated graphene oxide (EGO) destroys the formation of rings. The reduction of EGO sheets into RGO is also evidenced by the red shift of the absorbance peak from 228 nm to 264 nm. In this composite Na0.33V2O5 center dot 1.5H(2)O nanorods may adhere to the surface of RGO and/or embedded in the RGO nanosheets. As a result, an effective three-dimensional conducting network was formed by bridging RGO nanosheets, which can facilitate electron transport effectively and thus improve the kinetics and rate performance of Na0.33V2O5 center dot 1.5H(2)O nanorings/nanorods. The Na0.33V2O5 center dot 1.5H(2)O/RGO composites exhibited a discharge capacity of 340 mAh g(-1) at a current density of 0.1 mA g(-1) and also an improved cyclic stability. RGO plays a `flexible confinement' function to enwrap Na0.33V2O5 center dot 1.5H(2)O nanorods, which can compensate for the volume change and prevent the detachment and agglomeration of pulverized Na0.33V2O5 center dot 1.5H(2)O, thus extending the cycling life of the electrode. A probable reaction mechanism for the formation of Na0.33V2O5 center dot 1.5H(2)O nanorings is also discussed. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an effort to study the role of strain rate response on the tribological behavior of metals, room temperature experiments were conducted by sliding commercially pure titanium and a-iron pins against an H-11 die steel flats of various surface textures. The steel flat surface textures were specifically prepared to allow for imposing varying amounts of strain rates at the contacting interface during sliding motion. In the experiments, it was observed that titanium (a harder material than iron) formed a transfer layer on H-11 steel surface textures that produced higher strain rates. In contrast, the titanium pins abraded the steel surfaces that produced lower strain rates. The iron pins were found to abrade the H-11 steel surface regardless of the surface texture characteristics. This unique tribological behavior of titanium is likely due to the fact that titanium undergoes adiabatic shear banding at high strain rates, which creates pathways for lower resistance shear planes. These shear planes lead to fracture and transfer layer formation on the surface of the steel flat, which ultimately promotes a higher strain rate of deformation at the asperity level. Iron does not undergo adiabatic shear banding and thus more naturally abrades the surfaces. Overall, the results clear indicated that a materials strain rate response can be an important factor in controlling the tribological behavior of a plastically deforming material at the asperity level. DOI: 10.1115/1.4007675]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a self-consistent strong-coupling expansion for the self-energy (perturbation theory in the hopping) to describe the nonequilibrium dynamics of strongly correlated lattice fermions. We study the three-dimensional homogeneous Fermi-Hubbard model driven by an external electric field showing that the damping of the ensuing Bloch oscillations depends on the direction of the field and that for a broad range of field strengths a long-lived transient prethermalized state emerges. This long-lived transient regime implies that thermal equilibrium may be out of reach of the time scales accessible in present cold atom experiments but shows that an interesting new quasiuniversal transient state exists in nonequilibrium governed by a thermalized kinetic energy but not a thermalized potential energy. In addition, when the field strength is equal in magnitude to the interaction between atoms, the system undergoes a rapid thermalization, characterized by a different quasiuniversal behavior of the current and spectral function for different values of the hopping. DOI: 10.1103/PhysRevLett.109.260402

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmission loss (TL) of an elliptical cylindrical chamber muffler having a single side/end inlet and multiple side/end outlet is analyzed by means of the 3-D semi-analytical formulation based upon the modal expansion (in terms of the angular and radial Mathieu functions) and the Green's function. The acoustic pressure response obtained in terms of Green's function is integrated over surface area of the side/end ports (modeled as rigid pistons) and upon subsequent division by the port area, yields the acoustic pressure response or impedance Z] matrix parameters due to the uniform piston-driven model. The 3-D semi-analytical results are found to be in excellent agreement with the results obtained by means of 3-D FEA (SYSNOISE) simulations, thereby validating the semi-analytical procedure suggested in this work. Parametric studies such as the effect of chamber length (L), angular and axial locations of the ports, interchanging the locations of inlet and outlet ports as well as the addition of an outlet port for double outlet mufflers on the TL performance are reported, thereby leading to the formulation of design guidelines for obtaining muffler configurations exhibiting a broad-band TL spectrum. One such configuration is an axially long chamber having side-inlet and side-outlet ports such that one of the side ports is located at half the axial length on themajor/minor axis and the other side port is located at three-quarters (or one-quarter) of the axial length on the minor/major axis. (C) 2012 Institute of Noise Control Engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge about program worst case execution time (WCET) is essential in validating real-time systems and helps in effective scheduling. One popular approach used in industry is to measure execution time of program components on the target architecture and combine them using static analysis of the program. Measurements need to be taken in the least intrusive way in order to avoid affecting accuracy of estimated WCET. Several programs exhibit phase behavior, wherein program dynamic execution is observed to be composed of phases. Each phase being distinct from the other, exhibits homogeneous behavior with respect to cycles per instruction (CPI), data cache misses etc. In this paper, we show that phase behavior has important implications on timing analysis. We make use of the homogeneity of a phase to reduce instrumentation overhead at the same time ensuring that accuracy of WCET is not largely affected. We propose a model for estimating WCET using static worst case instruction counts of individual phases and a function of measured average CPI. We describe a WCET analyzer built on this model which targets two different architectures. The WCET analyzer is observed to give safe estimates for most benchmarks considered in this paper. The tightness of the WCET estimates are observed to be improved for most benchmarks compared to Chronos, a well known static WCET analyzer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper identified and characterized a special multi-degree of freedom toggle behavior, called double toggle, observed in a typical MCCB switching mechanism. For an idealized system, the condition of toggle sequence is derived geometrically. The existing tools available in a multi-body dynamics package are used for exploring the dynamic behavior of such systems parametrically. The double toggle mechanism is found to make the system insensitive to the operator's behavior; however, the system is vulnerable under extreme usage. The linkage kinematics and stopper locations are found to have dominant role on the behavior of the system. It is revealed that the operating time is immune to the inertial property of the input link and sensitive to that of the output link. Novel designs exploiting this observation, in terms of spring and toggle placements, to enhance switching performance have also been reported in the paper. Detailed study revealed that strategic placement of the spring helps in selective alteration of system performance. Thus, the study establishes the critical importance of the kinematic design of MCCB over the dynamic parameters. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new copper-azido complexes Cu-4(N-3)(8)(L-1)(2)](n) (1), Cu-4(N-3)(6)(L-2)(2)(H2O)(2)] (2), and Cu-4(N-3)(6)(L-3)(2)](n) (3) L-1 is the imine resulting from the condensation of pyridine-2-carboxaldehyde with N-methylethylenediamine, HL2 and HL3 are the condensation products of 2-hydroxy-3-methoxybenzaldehyde with N,N-diethylethylenediamine and N-ethylethylenediamine respectively] have been synthesized by using 0.5 molar equivalents of the Schiff base ligands with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of these complexes contains very similar Cu-4(II) building blocks. While 1 and 3 have overall 1D structures, 2 forms discrete tetranuclear clusters due to blocking of two coordination sites on the tetranuclear cluster by water molecules. Magnetic susceptibility measurements over a wide range of temperatures exhibit the presence of both antiferromagnetic and ferromagnetic exchanges within the tetranuclear unit structures. Density functional theory calculations (using B3LYP functional and two different basis sets) have been performed on the complexes 1-3 to provide a qualitative theoretical interpretation of their overall magnetic behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most studies involving cement-stabilized soil blocks (CSSB) concern material properties, such as the characteristics of erosion and strength and how the composition of the block affects these properties. Moreover, research has been conducted on the performance of various mortars, investigating their material properties and the tensile bond strength between CSSB units and mortar. In contrast, very little is currently known about CSSB masonry structural behavior. Because structural design codes of traditional masonry buildings were well developed over the past century, many of the same principles may be applicable to CSSB masonry buildings. This paper details the topic of flexural behavior of CSSB masonry walls and whether the Masonry Standards Joint Committee (MSJC) code can be applied to this material for improved safety of such buildings. DOI: 10.1061/(ASCE)MT.1943-5533.0000566. (C) 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tensile behavior of a high activity stand-alone Pt-aluminide (PtAl) bond coat was evaluated by the micro-tensile test method at various temperatures (room temperature to 1100 degrees C) and strain rates (10(-5) s(-1)-10(-1) s(-1).) At all strain rates, the stress strain behavior of the stand-alone coating was significantly affected by the variation in temperature. The stress strain response was linear, indicating brittle behavior, at temperatures below the brittle ductile transition temperature (BDTT). The coating exhibited appreciable ductility (up to 2%) above the BDTT. The strength (both yield stress and ultimate tensile strength) of the coating decreased and its ductility increased with increasing temperature above the BDTT. The tensile behavior of the coating was sensitive to strain rate in the ductile regime, with its strength increasing with increasing strain rate at any given temperature. The BDTT of the coating was found to increase with increasing with increasing strain rate. The coating exhibited two distinct mechanisms of deformation above the BDTT. The transition temperature for the change of deformation mechanism also increased with increasing strain rate. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an enhanced relational description for the prescription of the grasp requirement and evolution of the posture of a digital human hand towards satisfaction of this requirement. Precise relational description needs anatomical segmentation of the hand geometry into palmar, dorsal and lateral patches using the palm-plane and joint locations information, and operational segmentation of the object geometry into pull,push and lateral patches with due consideration to the effect of friction. Relational description identifies appropriate patches for a desired grasp condition. Satisfaction of this requirement occurs in two discrete stages,namely,contact establishment and post-contact force exertion for object capturing. Contact establishment occurs in four potentially overlapping phases,namely,re-orientation,transfer,pre- shaping,and closing-in. The novel h and re-orientation phase,enables the palm to face the object in a task sequence scenario, transfer takes the wrist to the ball park ; pre-shaping and close-in finally achieves the contact. In this paper, an anatomically pertinent closed-form formulation is presented for the closing-in phase for identification of the point of contact on the patches ,prescribed by the relational description. Since mere contact does not ensure grasp and slip phenomenon at the point of contact on application of force is a common occurrence, the effect of slip in presence of friction has been studied for 2D and 3D object grasping endeavours and a computational generation of the slip locus is presented.A general slip locus is found to be a non-linear curve even on planar faces.Two varieties of slip phenomena,namely,stabilizing and non-stabilizing slips, and their local characteristics have been identified.Study of the evolution of this slip characteristic over the slip locus exhibited diverse grasping behaviour possibilities. Thus, the relational description paradigm not only makes the requirement specification easy and meaningful but also enables high fidelity hand object interaction studies possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with a study of the photophysical property of poly(ether imine) (PETIM) dendritic macromolecule in the presence of aromatic compounds. The inherent photoluminescence property of the dendrimer undergoes quenching in the presence of guest aromatic nitro-compounds. From life-time measurements study, it is inferred that the lifetimes of luminescent species of the dendrimer are not affected with nitrophenols as guest molecules, whereas nitrobenzenes show a marginal change in the lifetimes of the species. Raman spectral characteristic of the macromolecular host-guest complex is conducted in order to identify conformational change of the dendrimer and a significant change in the stretching frequencies of methylene moieties of the dendrimer is observed for the complex with 1,3,5-trinitrobenzene, when compared to other complexes, free host and guest molecules. The photophysical behavior of electron-rich, aliphatic, neutral dendritic macromolecule in the presence of electron-deficient aromatic molecules is illustrated in the present study. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterization of a closed-cell aluminum foam with the trade name Alporas is carried out here under compression loading for a nominal cross-head speed of 1 mm/min. Foam samples in the form of cubes are tested in a UTM and the average stress-strain behavior is obtained which clearly displays a plateau strength of approximately 2 MPa. It is noted that the specific energy absorption capacity of the foam can be high despite its low strength which makes it attractive as a material for certain energy-absorbing countermeasures. The mechanical behavior of the present Alporas foam is simulated using cellular (i.e. so-called microstructure-based) and solid element-based finite element models. The efficacy of the cellular approach is shown, perhaps for the first time in published literature, in terms of prediction of both stress-strain response and inclined fold formation during axial crush under compression loading. Keeping in mind future applications under impact loads, limited results are presented when foam samples are subjected to low velocity impact in a drop-weight test set-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reentrant low temperature phase of the perovskite manganite LaMnO3+delta (delta=0.22) has been investigated with ac susceptibility and dc magnetization studies. A critical examination of the memory effects in ac susceptibility leads us to the conclusion that the slow dynamics in the system is a consequence of collective relaxation processes resulting from interactions between ferromagnetic clusters, whose presence was indicated in earlier studies. Here, we postulate that the collective behavior is due to the existence of long-range (dipolar) interactions between the large ferromagnetic `superspins'. This is also confirmed by an abnormally large microscopic spin-flip time (similar to 10(-9) s) compared to a canonical spin glass. (C) 2013 Elsevier B.V. All rights reserved.