958 resultados para MASSIVE NUCLEI
Resumo:
Using far-infrared imaging from the "Herschel Lensing Survey," we derive dust properties of spectroscopically confirmed cluster member galaxies within two massive systems at z ~ 0.3: the merging Bullet Cluster and the more relaxed MS2137.3-2353. Most star-forming cluster sources (~90%) have characteristic dust temperatures similar to local field galaxies of comparable infrared (IR) luminosity (T_dust ~ 30 K). Several sub-luminous infrared galaxy (LIRG; L_IR < 10^11 L_☉) Bullet Cluster members are much warmer (T_dust > 37 K) with far-infrared spectral energy distribution (SED) shapes resembling LIRG-type local templates. X-ray and mid-infrared data suggest that obscured active galactic nuclei do not contribute significantly to the infrared flux of these "warm dust" galaxies. Sources of comparable IR luminosity and dust temperature are not observed in the relaxed cluster MS2137, although the significance is too low to speculate on an origin involving recent cluster merging. "Warm dust" galaxies are, however, statistically rarer in field samples (>3σ), indicating that the responsible mechanism may relate to the dense environment. The spatial distribution of these sources is similar to the whole far-infrared bright population, i.e., preferentially located in the cluster periphery, although the galaxy hosts tend toward lower stellar masses (M_* < 10^10 M_☉). We propose dust stripping and heating processes which could be responsible for the unusually warm characteristic dust temperatures. A normal star-forming galaxy would need 30%-50% of its dust removed (preferentially stripped from the outer reaches, where dust is typically cooler) to recover an SED similar to a "warm dust" galaxy. These progenitors would not require a higher IR luminosity or dust mass than the currently observed normal star-forming population.
Resumo:
The accretion of minor satellites has been postulated as the most likely mechanism to explain the significant size evolution of massive galaxies over cosmic time. Using a sample of 629 massive (M_star~ 10^11 M_⊙) galaxies from the near-infrared Palomar/DEEP-2 survey, we explore what fraction of these objects have satellites with 0.01 < M_sat/M_central < 1 (1:100) up to z= 1 and what fraction have satellites with 0.1 < M_sat/M_central < 1 (1:10) up to z= 2 within a projected radial distance of 100 kpc. We find that the fraction of massive galaxies with satellites, after background correction, remains basically constant and close to 30 per cent for satellites with a mass ratio down to 1:100 up to z= 1, and close to 15 per cent for satellites with a 1:10 mass ratio up to z= 2. The family of spheroid-like massive galaxies presents a 2–3 times larger fraction of objects with satellites than the group of disc-like massive galaxies. A crude estimation of the number of 1:3 mergers a massive spheroid-like galaxy has experienced since z~2 is around 2. For a disc-like galaxy this number decreases to ~1.
Resumo:
We present measurements of the mean mid-infrared to submillimetre flux densities of massive (M_*≳ 10^11 M_⊙) galaxies at redshifts 1.7 < z < 2.9, obtained by stacking positions of known objects taken from the GOODS NICMOS Survey (GNS) catalogue on maps at 24 μm (Spitzer/MIPS); 70, 100 and 160 μm (Herschel/PACS); 250, 350 and 500 μm (BLAST); and 870 μm (LABOCA). A modified blackbody spectrum fit to the stacked flux densities indicates a median [interquartile] star formation rate (SFR) of SFR = 63[48, 81] M_⊙ yr^−1. We note that not properly accounting for correlations between bands when fitting stacked data can significantly bias the result. The galaxies are divided into two groups, disc-like and spheroid-like, according to their Sérsic indices, n. We find evidence that most of the star formation is occurring in n≤ 2 (disc-like) galaxies, with median [interquartile] SFR = 122[100, 150] M_⊙ yr^−1, while there are indications that the n > 2 (spheroid-like) population may be forming stars at a median [interquartile] SFR = 14[9, 20] M_⊙ yr^−1, if at all. Finally, we show that star formation is a plausible mechanism for size evolution in this population as a whole, but find only marginal evidence that it is what drives the expansion of the spheroid-like galaxies.
Resumo:
We present the results of a comparison between the optical morphologies of a complete sample of 46 southern 2 Jy radio galaxies at intermediate redshifts (0.05 < z < 0.7) and those of two control samples of quiescent early-type galaxies: 55 ellipticals at redshifts z ≤ 0.01 from the Observations of Bright Ellipticals at Yale (OBEY) survey, and 107 early-type galaxies at redshifts 0.2 < z < 0.7 in the Extended Groth Strip (EGS). Based on these comparisons, we discuss the role of galaxy interactions in the triggering of powerful radio galaxies (PRGs). We find that a significant fraction of quiescent ellipticals at low and intermediate redshifts show evidence for disturbed morphologies at relatively high surface brightness levels, which are likely the result of past or on-going galaxy interactions. However, the morphological features detected in the galaxy hosts of the PRGs (e.g. tidal tails, shells, bridges, etc.) are up to 2 mag brighter than those present in their quiescent counterparts. Indeed, if we consider the same surface brightness limits, the fraction of disturbed morphologies is considerably smaller in the quiescent population (53 per cent at z < 0.2 and 48 per cent at 0.2 ≤ z < 0.7) than in the PRGs (93 per cent at z < 0.2 and 95 per cent at 0.2 ≤ z < 0.7 considering strong-line radio galaxies only). This supports a scenario in which PRGs represent a fleeting active phase of a subset of the elliptical galaxies that have recently undergone mergers/interactions. However, we demonstrate that only a small proportion (≲20 per cent) of disturbed early-type galaxies are capable of hosting powerful radio sources.
Resumo:
We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 μm silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 μm and [Ne III]15.56 μm emissions. The behavior of the integrated PAH emission and 9.7 μm silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 μm/[Ne II]12.81 μm ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 μm/[Ne II]12.81 μm ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 μm PAH emission appears more extended than the dust 5.5 μm continuum emission. We find a dependency of the 11.3 μm PAH/7.7 μm PAH and [Ne II]12.81 μm/11.3 μm PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K
Resumo:
Durante el desarrollo del proyecto he aprendido sobre Big Data, Android y MongoDB mientras que ayudaba a desarrollar un sistema para la predicción de las crisis del trastorno bipolar mediante el análisis masivo de información de diversas fuentes. En concreto hice una parte teórica sobre bases de datos NoSQL, Streaming Spark y Redes Neuronales y después diseñé y configuré una base de datos MongoDB para el proyecto del trastorno bipolar. También aprendí sobre Android y diseñé y desarrollé una aplicación de móvil en Android para recoger datos para usarlos como entrada en el sistema de predicción de crisis. Una vez terminado el desarrollo de la aplicación también llevé a cabo una evaluación con usuarios.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Uncertainty quantification (UQ) is both an old and new concept. The current novelty lies in the interactions and synthesis of mathematical models, computer experiments, statistics, field/real experiments, and probability theory, with a particular emphasize on the large-scale simulations by computer models. The challenges not only come from the complication of scientific questions, but also from the size of the information. It is the focus in this thesis to provide statistical models that are scalable to massive data produced in computer experiments and real experiments, through fast and robust statistical inference.
Chapter 2 provides a practical approach for simultaneously emulating/approximating massive number of functions, with the application on hazard quantification of Soufri\`{e}re Hills volcano in Montserrate island. Chapter 3 discusses another problem with massive data, in which the number of observations of a function is large. An exact algorithm that is linear in time is developed for the problem of interpolation of Methylation levels. Chapter 4 and Chapter 5 are both about the robust inference of the models. Chapter 4 provides a new criteria robustness parameter estimation criteria and several ways of inference have been shown to satisfy such criteria. Chapter 5 develops a new prior that satisfies some more criteria and is thus proposed to use in practice.
Resumo:
Since the implementation of the Programa Conectar Igualdad (PCI) (Connecting Equality Program) in 2010 in Argentina, numerous Social Science specialists started to research how massive ICT introduction in schools would radically affect teaching and learning processes, knowledge building and youth behaviour. Nevertheless, there is still not much empirical evidence showing the ways in which these technologies are appropriated. This situation discloses the need of placing research questions locally situated with regard to those potential changes. What existing access methods does PCI encounter? And how does its implementation participate in the design of personal and family heterogeneous trajectories of ICTs appropriation? How do the students themselves perceive the infl uence of PCI on their own technologic abilities and competence? How do knowledge and aptitudes associated to new digital media articulate with the knowledge manners promoted by the school format and institutionalism? How does the massive introduction of netbooks affect the interaction among different school actors (students-teachers)? What happens in other sociability and socialization spaces, such as the house and cybercafé?
Resumo:
Herschel Island in the southern Beaufort Sea is a push moraine at the northwestern-most limit of the Laurentide Ice Sheet. Stable water isotope (d18O, dD) and hydrochemical studies were applied to two tabular massive ground ice bodies to unravel their genetic origin. Buried glacier ice or basal regelation ice was encountered beneath an ice-rich diamicton with strong glaciotectonic deformation structures. The massive ice isotopic composition was highly depleted in heavy isotopes (mean d18O: -33 per mil; mean dD: -258 per mil), suggesting full-glacial conditions during ice formation. Other massive ice of unknown origin with a very large d18O range (from -39 to -21 per mil) was found adjacent to large, striated boulders. A clear freezing slope was present with progressive depletion in heavy isotopes towards the centre of the ice body. Fractionation must have taken place during closed-system freezing, possibly of a glacial meltwater pond. Both massive ground ice bodies exhibited a mixed ion composition suggestive of terrestrial waters with a marine influence. Hydrochemical signatures resemble the Herschel Island sediments that are derived from nearshore marine deposits upthrust by the Laurentide ice. A prolonged contact between water feeding the ice bodies and the surrounding sediment is therefore inferred.
Resumo:
This thesis reports on 17O (I = 5/2) and 59Co (I = 7/2) quadrupole central transition (QCT) NMR studies of three classes of biologically important molecules: glucose, nicotinamide and Vitamin B12 derivatives. Extensive QCT NMR experiments were performed over a wide range of molecular motion by changing solvent viscosity and temperature. 17O-labels were introduced at the 5- and 6-positions respectively: D-[5-17O]-glucose and D-[6-17O]-glucose following the literature method. QCT NMR greatly increased the molecular size limit obtained by ordinary solution NMR. It requires much lower temperatures to get the optimal spectral resolution, which are preferable for biological molecules. In addition, quadrupolar product parameter (PQ) and shielding anisotropy product parameter (PSA) were obtained for hydroxide group and amide group for the first time. For conventional NMR studies of quadrupolar nuclei, only PQ is accessible while QCT NMR obtained both PQ and PSA simultaneously. Our experiments also suggest the resolution of QCT NMR can be even better than that obtained by conventional NMR. We observed for the first time that the second-order quadrupolar interaction becomes a dominant relaxation mechanism under ultraslow motion. All these observations suggest that QCT NMR can become a standard technique for studying quadrupolar nuclei in solution.
Resumo:
This is a pre-print for personal use only. Please refer to the Springer website for the official, published version http://www.springer.com/978-3-662-52923-2
Resumo:
Aims: We investigate the characteristics of two newly discovered short-period, double-lined, massive binary systems in the Large Magellanic Cloud, VFTS 450 (O9.7 II-Ib + O7::) and VFTS 652 (B1 Ib + O9: III:).
Methods: We perform model-atmosphere analyses to characterise the photospheric properties of both members of each binary (denoting the "primary" as the spectroscopically more conspicuous component). Radial velocities and optical photometry are used to estimate the binary-system parameters.
Results: We estimate Teff = 27 kK, log g = 2.9 (cgs) for the VFTS 450 primary spectrum (34 kK, 3.6: for the secondary spectrum); and Teff = 22 kK, log g = 2.8 for the VFTS 652 primary spectrum (35 kK, 3.7: for the secondary spectrum). Both primaries show surface nitrogen enrichments (of more than 1 dex for VFTS 652), and probable moderate oxygen depletions relative to reference LMC abundances. We determine orbital periods of 6.89 d and 8.59 d for VFTS 450 and VFTS 652, respectively, and argue that the primaries must be close to filling their Roche lobes. Supposing this to be the case, we estimate component masses in the range ∼20-50 M⊙.
Conclusions: The secondary spectra are associated with the more massive components, suggesting that both systems are high-mass analogues of classical Algol systems, undergoing case-A mass transfer. Difficulties in reconciling the spectroscopic analyses with the light-curves and with evolutionary considerations suggest that the secondary spectra are contaminated by (or arise in) accretion disks.