890 resultados para Light gauge steel roofing systems
Resumo:
Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at nonzero temperature or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can address the corresponding chiral dynamics in real time.
Resumo:
The main aim of this article is to shed light on the extent to which differences in higher education participation between people with and without a migrant background of low/higher social origin can be explained by two macro-level characteristics of national educational institutions: stratification of the secondary school system and provision of alternative access to higher education. General assumptions are that people with a migrant background of low social origin benefit in low-stratified secondary school systems and in systems that provide alternative access to institutions of higher education more than their native peers in the same social stratum, owing to primary and secondary effects of migrant background. Database is a pooled dataset of the five waves of the European Social Survey. Results of logistic multi-level analyses indicate that a low-stratified secondary school system improves the probability of people with a migrant background/low social origin attaining a higher education degree. On the other hand, a stratified secondary school system reduces their chances regarding this educational stage. The provision of alternative access to an institution of higher education improves their likelihood of becoming higher education graduates.
Resumo:
The efficient collection of solar energy relies on the design and construction of well-organized light-harvesting systems. Herein we report that supramolecular phenanthrene polymers doped with pyrene are effective collectors of light energy. The linear polymers are formed through the assembly of short amphiphilic oligomers in water. Absorption of light by phenanthrene residues is followed by electronic energy transfer along the polymer over long distances (>100 nm) to the accepting pyrene molecules. The high efficiency of the energy transfer, which is documented by large fluorescence quantum yields, suggests a quantum coherent process.
Resumo:
We use quantum link models to construct a quantum simulator for U(N) and SU(N) lattice gauge theories. These models replace Wilson’s classical link variables by quantum link operators, reducing the link Hilbert space to a finite number of dimensions. We show how to embody these quantum link models with fermionic matter with ultracold alkaline-earth atoms using optical lattices. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can thus address the corresponding dynamics in real time. Using exact diagonalization results we show that these systems share qualitative features with QCD, including chiral symmetry breaking and we study the expansion of a chirally restored region in space in real time.
Resumo:
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.
Resumo:
We present a generalized framework for gradient-domain Metropolis rendering, and introduce three techniques to reduce sampling artifacts and variance. The first one is a heuristic weighting strategy that combines several sampling techniques to avoid outliers. The second one is an improved mapping to generate offset paths required for computing gradients. Here we leverage the properties of manifold walks in path space to cancel out singularities. Finally, the third technique introduces generalized screen space gradient kernels. This approach aligns the gradient kernels with image structures such as texture edges and geometric discontinuities to obtain sparser gradients than with the conventional gradient kernel. We implement our framework on top of an existing Metropolis sampler, and we demonstrate significant improvements in visual and numerical quality of our results compared to previous work.
Resumo:
We propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As our input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We include a novel approach to resample the input into regularly sampled 3D light fields by aligning them in the spatio-temporal domain, and a technique for high-quality disparity estimation from light fields. We show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.
Resumo:
In this work we solve the uncalibrated photometric stereo problem with lights placed near the scene. We investigate different image formation models and find the one that best fits our observations. Although the devised model is more complex than its far-light counterpart, we show that under a global linear ambiguity the reconstruction is possible up to a rotation and scaling, which can be easily fixed. We also propose a solution for reconstructing the normal map, the albedo, the light positions and the light intensities of a scene given only a sequence of near-light images. This is done in an alternating minimization framework which first estimates both the normals and the albedo, and then the light positions and intensities. We validate our method on real world experiments and show that a near-light model leads to a significant improvement in the surface reconstruction compared to the classic distant illumination case.
Resumo:
We present a novel approach to the reconstruction of depth from light field data. Our method uses dictionary representations and group sparsity constraints to derive a convex formulation. Although our solution results in an increase of the problem dimensionality, we keep numerical complexity at bay by restricting the space of solutions and by exploiting an efficient Primal-Dual formulation. Comparisons with state of the art techniques, on both synthetic and real data, show promising performances.
Resumo:
Species belonging to the Culicoides complexes (Diptera, Ceratopogonidae), obsoletus and pulicaris, in Switzerland, are potential vectors of both bluetongue virus (BTV) and African horse sickness virus (AHSV). The epidemic of BTV in 2006 and 2007 in Europe has highlighted the risk of introduction and spread of vector-borne diseases in previously non-endemic areas. As a measure of prevention, as part of an integrated control programme in the event of an outbreak of African horse sickness (AHS), it is of utmost importance to prevent, or substantially reduce, contact between horses and Culicoides. The aim of the present study was to compare the effect of three protection systems, net, fan, repellent, or combinations thereof, with regard to their potential to reduce contact between horses and Culicoides. Three different equine housing systems, including individual boxes (BX), group housing systems (GR), and individual boxes with permanently accessible paddock (BP) were used. The efficacy of the protection systems were evaluated by comparing the total number counts of collected female Culicoides, of non-blood-fed and blood-fed Culicoides, respectively, with UV black light traps. The study was conducted over 3 summer months during 2012 and 2013 each and focused on the efficacy and practicality of the protection systems. The repellent was tested in 2012 only and not further investigated in 2013, as it showed no significant effect in reducing Culicoides collected in the light traps. Net protection system provided the best overall protection for the total number of female Culicoides, non-blood-fed and blood-fed Culicoides in all tested housing systems. The net, with a pore size of 0.1825 mm(2), reduced the total number of Culicoides collected in the housing systems BP, GR and BX by 98%, 85% and 67%, respectively. However, in the GR housing system, no significant difference between the effectiveness of the fan and the net were determined for any of the three Culicoides categories. The results of the present study demonstrated that horse owners can substantially reduce their horses' exposure to Culicoides, by using net protection in the housing systems BX, BP and GR. In GR housing systems, protection against Culicoides using a fan is also recommended.
Resumo:
This thesis covers a broad part of the field of computational photography, including video stabilization and image warping techniques, introductions to light field photography and the conversion of monocular images and videos into stereoscopic 3D content. We present a user assisted technique for stereoscopic 3D conversion from 2D images. Our approach exploits the geometric structure of perspective images including vanishing points. We allow a user to indicate lines, planes, and vanishing points in the input image, and directly employ these as guides of an image warp that produces a stereo image pair. Our method is most suitable for scenes with large scale structures such as buildings and is able to skip the step of constructing a depth map. Further, we propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As the input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We convert the input into a regularly sampled 3D light field by resampling and aligning them in the spatio-temporal domain. We also present a novel technique for high-quality disparity estimation from light fields. Finally, we show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.
Resumo:
In this paper we make a further step towards a dispersive description of the hadronic light-by-light (HLbL) tensor, which should ultimately lead to a data-driven evaluation of its contribution to (g − 2) μ . We first provide a Lorentz decomposition of the HLbL tensor performed according to the general recipe by Bardeen, Tung, and Tarrach, generalizing and extending our previous approach, which was constructed in terms of a basis of helicity amplitudes. Such a tensor decomposition has several advantages: the role of gauge invariance and crossing symmetry becomes fully transparent; the scalar coefficient functions are free of kinematic singularities and zeros, and thus fulfill a Mandelstam double-dispersive representation; and the explicit relation for the HLbL contribution to (g − 2) μ in terms of the coefficient functions simplifies substantially. We demonstrate explicitly that the dispersive approach defines both the pion-pole and the pion-loop contribution unambiguously and in a model-independent way. The pion loop, dispersively defined as pion-box topology, is proven to coincide exactly with the one-loop scalar QED amplitude, multiplied by the appropriate pion vector form factors.
Resumo:
Rockfall protection barriers are connected to the ground using steel cables fixed with anchors and foundations for the steel posts. It is common practice to measure the forces in the cables, while to date measurements of forces in the foundations have been inadequately resolved. An overview is presented of existing methods to measure the loads on the post foundations of rockfall protection barriers. Addressing some of the inadequacies of existing approaches, a novel sensor unit is presented that is able to capture the forces acting on post foundations in all six degrees of freedom. The sensor unit consists of four triaxial force sensors placed between two steel plates. To correctly convert the measurements into the directional forces acting on the foundation a special in-situ calibration procedure is proposed that delivers a corresponding conversion matrix.
Resumo:
The largest uncertainties in the Standard Model calculation of the anomalous magnetic moment of the muon (g − 2)μ come from hadronic contributions. In particular, it can be expected that in a few years the subleading hadronic light-by-light (HLbL) contribution will dominate the theory uncertainty. We present a dispersive description of the HLbL tensor, which is based on unitarity, analyticity, crossing symmetry, and gauge invariance. Such a model-independent Approach opens up an avenue towards a data-driven determination of the HLbL contribution to the (g − 2)μ.
Resumo:
This paper sheds new light on the determination of environmental policies in majoritarian federal electoral systems such as the U.S., and derives implications for the environmental federalism debate on whether the national or local government should have authority over environmental policies. In majoritarian systems, where the legislature consists of geographically distinct electoral districts, the majority party (at either the national or the state level) favors its own home districts; depending on the location of polluting industries and the associated pollution damages, the majority party may therefore impose sub-optimally high or low pollution taxes due to a majority bias. We show that majority bias can influence the social-welfare ranking of alternative government policies and, in some cases, may actually bring distortionary policies closer to the first-best solution.