954 resultados para Lie algebra


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project was partially supported by RFBR, grants 99-01-00233, 98-01-01020 and 00-15-96128.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theorem of Czerniakiewicz and Makar-Limanov, that all the automorphisms of a free algebra of rank two are tame is proved here by showing that the group of these automorphisms is the free product of two groups (amalgamating their intersection), the group of all affine automorphisms and the group of all triangular automorphisms. The method consists in finding a bipolar structure. As a consequence every finite subgroup of automorphisms (in characteristic zero) is shown to be conjugate to a group of linear automorphisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents the principal results of the doctoral thesis “Direct Operational Methods in the Environment of a Computer Algebra System” by Margarita Spiridonova (Institute of mathematics and Informatics, BAS), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 23 March, 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods use quasirandom sequences with the resulting convergence rate for numerical integration as good as O((logN)^k)N^(−1)). We have shown theoretically and through numerical tests that the use of quasirandom sequences improves both the magnitude of the error and the convergence rate of the considered Monte Carlo methods. We also analyze the complexity of considered quasi-Monte Carlo algorithms and compare them to the complexity of the analogous Monte Carlo and deterministic algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 17A50, 05C05.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Еленка Генчева, Цанко Генчев В настоящата работа се разглеждат крайни прости групи G , които могат да се представят като произведение на две свои собствени неабелеви прости подгрупи A и B. Всяко такова представяне G = AB е прието да се нарича факторизация на G, а тъй като множителите A и B са избрани да бъдат прости подгрупи на G, то разглежданите факторизации са известни още като прости факторизации на G. Тук се предполага, че G е проста група от лиев тип и лиев ранг 4 над крайно поле GF (q). Ключови думи: крайни прости групи, групи от лиев тип, факторизации на групи.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 17A32, Secondary 17D25.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 46F30, 46F10

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary: 46B20. Secondary: 46H99, 47A12.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ebben a tanulmányban ismertetjük a Nöther-tétel lényegi vonatkozásait, és kitérünk a Lie-szimmetriák értelmezésére abból a célból, hogy közgazdasági folyamatokra is alkalmazzuk a Lagrange-formalizmuson nyugvó elméletet. A Lie-szimmetriák dinamikai rendszerekre történő feltárása és viselkedésük jellemzése a legújabb kutatások eredményei e területen. Például Sen és Tabor (1990), Edward Lorenz (1963), a komplex kaotikus dinamika vizsgálatában jelent®s szerepet betöltő 3D modelljét, Baumann és Freyberger (1992) a két-dimenziós Lotka-Volterra dinamikai rendszert, és végül Almeida és Moreira (1992) a három-hullám interakciós problémáját vizsgálták a megfelelő Lie-szimmetriák segítségével. Mi most empirikus elemzésre egy közgazdasági dinamikai rendszert választottunk, nevezetesen Goodwin (1967) ciklusmodelljét. Ennek vizsgálatát tűztük ki célul a leírandó rendszer Lie-szimmetriáinak meghatározásán keresztül. / === / The dynamic behavior of a physical system can be frequently described very concisely by the least action principle. In the centre of its mathematical presentation is a specic function of coordinates and velocities, i.e., the Lagrangian. If the integral of the Lagrangian is stationary, then the system is moving along an extremal path through the phase space, and vice versa. It can be seen, that each Lie symmetry of a Lagrangian in general corresponds to a conserved quantity, and the conservation principle is explained by a variational symmetry related to a dynamic or geometrical symmetry. Briey, that is the meaning of Noether's theorem. This paper scrutinizes the substantial characteristics of Noether's theorem, interprets the Lie symmetries by PDE system and calculates the generators (symmetry vectors) on R. H. Goodwin's cyclical economic growth model. At first it will be shown that the Goodwin model also has a Lagrangian structure, therefore Noether's theorem can also be applied here. Then it is proved that the cyclical moving in his model derives from its Lie symmetries, i.e., its dynamic symmetry. All these proofs are based on the investigations of the less complicated Lotka Volterra model and those are extended to Goodwin model, since both models are one-to-one maps of each other. The main achievement of this paper is the following: Noether's theorem is also playing a crucial role in the mechanics of Goodwin model. It also means, that its cyclical moving is optimal. Generalizing this result, we can assert, that all dynamic systems' solutions described by first order nonlinear ODE system are optimal by the least action principle, if they have a Lagrangian.