808 resultados para Lewy bodies parkinson disease
Resumo:
The ubiquitin–proteasome system (UPS) is the main intracellular pathway for modulated protein turnover, playing an important role in the maintenance of cellular homeostasis. It also exerts a protein quality control through degradation of oxidized, mutant, denatured, or misfolded proteins and is involved in many biological processes where protein level regulation is necessary. This system allows the cell to modulate its protein expression pattern in response to changing physiological conditions and provides a critical protective role in health and disease. Impairments of UPS function in the central nervous system (CNS) underlie an increasing number of genetic and idiopathic diseases, many of which affect the retina. Current knowledge on the UPS composition and function in this tissue, however, is scarce and dispersed. This review focuses on UPS elements reported in the retina, including ubiquitinating and deubiquitinating enzymes (DUBs), and alternative proteasome assemblies. Known and inferred roles of protein ubiquitination, and of the related, SUMO conjugation (SUMOylation) process, in normal retinal development and adult homeostasis are addressed, including modulation of the visual cycle and response to retinal stress and injury. Additionally, the relationship between UPS dysfunction and human neurodegenerative disorders affecting the retina, including Alzheimer's, Parkinson's, and Huntington's diseases, are dealt with, together with numerous instances of retina-specific illnesses with UPS involvement, such as retinitis pigmentosa, macular degenerations, glaucoma, diabetic retinopathy (DR), and aging-related impairments. This information, though still basic and limited, constitutes a suitable framework to be expanded in incoming years and should prove orientative toward future therapy design targeting sight-affecting diseases with a UPS underlying basis.
Clinical practice guidelines for management of parkinson’s disease : a systematic critical appraisal
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Beaucoup de patients atteints de la maladie de Parkinson (MP) peuvent souffrir de troubles cognitifs dès les étapes initiales de la maladie et jusqu’à 80% d’entre eux vont développer une démence. Des altérations fonctionnelles au niveau du cortex préfrontal dorsolatéral (CPFDL), possiblement en relation avec le noyau caudé, seraient à l’origine de certains de ces déficits cognitifs. Des résultats antérieurs de notre groupe ont montré une augmentation de l’activité et de la connectivité dans la boucle cortico-striatale cognitive suite à la stimulation magnétique transcrânienne (SMT) utilisant des paramètres « theta burst » intermittent (iTBS) sur le CPFDL gauche. Pour cette étude, 24 patients atteints de la MP avec des troubles cognitifs ont été séparées en 2 groupes : le groupe iTBS active (N=15) et le groupe sham (stimulation simulée, N=9). Une batterie neuropsychologique détaillée évaluant cinq domaines cognitifs (attention, fonctions exécutives, langage, mémoire et habiletés visuo-spatiales) a été administrée lors des jours 1, 8, 17 et 37. Le protocole iTBS a été appliqué sur le CPFDL gauche durant les jours 2, 4 et 7. Les scores z ont été calculés pour chaque domaine cognitif et pour la cognition globale. Les résultats ont montré une augmentation significative de la cognition globale jusqu’à 10 jours suivant l’iTBS active, particulièrement au niveau de l’attention, des fonctions exécutives et des habiletés visuo-spatiales. Cet effet sur la cognition globale n’est pas répliqué dans le groupe sham. Ces résultats suggèrent donc que l’iTBS peut moduler la performance cognitive chez les patients atteints de MP avec des déficits cognitifs.
Resumo:
Poster presented at the First international Congress of CiiEM “From Basic Sciences to Clinical Research”, 27-28 November 2015, Egas Moniz, Caparica, Portugal.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.
Resumo:
Background The identification and characterization of genes that influence the risk of common, complex multifactorial disease primarily through interactions with other genes and environmental factors remains a statistical and computational challenge in genetic epidemiology. We have previously introduced a genetic programming optimized neural network (GPNN) as a method for optimizing the architecture of a neural network to improve the identification of gene combinations associated with disease risk. The goal of this study was to evaluate the power of GPNN for identifying high-order gene-gene interactions. We were also interested in applying GPNN to a real data analysis in Parkinson's disease. Results We show that GPNN has high power to detect even relatively small genetic effects (2–3% heritability) in simulated data models involving two and three locus interactions. The limits of detection were reached under conditions with very small heritability (
Resumo:
Background: The identification and characterization of genes that influence the risk of common, complex multifactorial disease primarily through interactions with other genes and environmental factors remains a statistical and computational challenge in genetic epidemiology. We have previously introduced a genetic programming optimized neural network (GPNN) as a method for optimizing the architecture of a neural network to improve the identification of gene combinations associated with disease risk. The goal of this study was to evaluate the power of GPNN for identifying high-order gene-gene interactions. We were also interested in applying GPNN to a real data analysis in Parkinson's disease. Results: We show that GPNN has high power to detect even relatively small genetic effects (2-3% heritability) in simulated data models involving two and three locus interactions. The limits of detection were reached under conditions with very small heritability (
Resumo:
The density of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in Glees and Marsland stained sections of the hippocampus and parahippocampal gyrus (PHG) in 20 pateints with Alzheimer's disease. In addition, in six of the patients, the density of beta/A4 protein deposits, as revealed by immunohistochemistry and neurofibrillary changes demonstrated with the Gallyas stain, were studied in adjacent sections. The density of Glees SP and beta/A4 deposits was significantly greater in area CA1 of the hippocampus and in the subiculum than in the PHG. Hence, neurofibrillary degeneration appears to be a more important lesion than beta/A4 deposition in the hippocampus compared with the PHG. In addition, the detailed distribution of the lesions in the hippocampus could be explained if beta/A4/SP and NFT occur on the axon terminals and in the cell bodies respectively of the same neurons.
Resumo:
The histological features of cases of variant Creutzfeldt-Jakob disease (vCJD) are often distributed in the brain in clusters. This study investigated the spatial associations between the clusters of the vacuoles, surviving neurons, and prion protein (PrP) deposits in various brain areas in 11 cases of vCJD. Clusters of vacuoles and surviving neurons were positively correlated in the cerebral cortex but negatively correlated in the dentate gyrus. Clusters of the florid and diffuse type of PrP deposit were not positively correlated with those of either the vacuoles or the surviving neurons although a negative correlation was observed between the florid plaques and surviving neurons in some cortical areas. Clusters of the florid and diffuse deposits were either negatively correlated or uncorrelated. These data suggest: 1) that clusters of vacuoles in the cerebral cortex are associated with the presence of surviving neuronal cell bodies, 2) that the clusters of vacuoles are not spatially related to those of the PrP deposits, and 3) different factors are involved in the pathogenesis of the florid and diffuse PrP deposits.
Resumo:
The frequency of morphological abnormalities in neuronal perikarya was studied in the cerebral cortex in cases of sporadic CJD (sCJD) and in elderly control patients. Three hypotheses were tested, namely that the proportion of neurons exhibiting abnormal morphology was increased: (i) in sCJD compared with control patients; (ii) in sCJD, in areas with significant prion protein (PrP) deposition compared with regions with little or no PrP deposition; and (iii) when neurons were spatially associated with a PrP deposit compared with neurons between PrP deposits. Changes in cell shape (swollen or atrophic cell bodies), nuclei (displaced, indistinct, shrunken or absent nuclei; absence of nucleolus), and cytoplasm (dense or pale cytoplasm, PrP positive cytoplasm, vacuolation) were commonly observed in all of the cortical areas studied in the sCJD cases. The proportion of neurons exhibiting each type of morphological change was significantly increased in sCJD compared with age-matched control cases. In sCJD, neuronal abnormalities were present in areas with little PrP deposition, but at significantly lower frequencies compared with areas with significant densities of PrP deposits. Abnormalities of cell shape, nucleus and the presence of cytoplasmic vacuolation were increased when the neurons were associated with a PrP deposit, but fewer of these neurons were PrP-positive compared with neurons between deposits. The data suggest significant neuronal degeneration in the cerebral cortex in sCJD in areas without significant PrP deposition and a further phase of neuronal degeneration associated with the appearance of PrP deposits.
Resumo:
Clustering of ballooned neurons (BN) and tau positive neurons with inclusion bodies (tau+ neurons) was studied in the upper and lower laminae of the frontal, parietal and temporal cortex in 12 patients with corticobasal degeneration (CBD). In a significant proportion of brain areas examined, BN and tau+ neurons exhibited clustering with a regular distribution of clusters parallel to the pia mater. A regular pattern of clustering of BN and tau+ neurons was observed equally frequently in all cortical areas examined and in the upper and lower laminae. No significant correlations were observed between the cluster sizes of BN or tau+ neurons in the upper compared with the lower cortex or between the cluster sizes of BN and tau+ neurons. The results suggest that BN and tau+ neurons in CBD exhibit the same type of spatial pattern as lesions in Alzheimer's disease, Lewy body dementia and Pick's disease. The regular periodicity of the cerebral cortical lesions is consistent with the degeneration of the cortico-cortical projections in CBD.
Resumo:
The densities of Pick bodies (PB), Pick cells (PC), senile plaques (SP) and neurofibrillary tangles (NFT) in the frontal and temporal lobe were determined in ten patients diagnosed with Pick's disease (PD). The density of PB was significantly higher in the dentate gyrus granule cells compared with the cortex and the CA sectors of the hippocampus. Within the hippocampus, the highest densities of PB were observed in sector CA1. PC were absent in the dentate gyrus and no significant differences in PC density were observed in the remaining brain regions. With the exception of two patients, the densities of SP and NFT were low with no significant differences in mean densities between cortical regions. In the hippocampus, the density of NFT was greatest in sector CA1. PB and PC densities were positively correlated in the frontal cortex but no correlations were observed between the PD and AD lesions. A principal components analysis (PCA) of the neuropathological variables suggested that variations in the densities of SP in the frontal cortex, temporal cortex and hippocampus were the most important sources of heterogeneity within the patient group. Variations in the densities of PB and NFT in the temporal cortex and hippocampus were of secondary importance. In addition, the PCA suggested that two of the ten patients were atypical. One patient had a higher than average density of SP and one familial patient had a higher density of NFT but few SP.