894 resultados para Left Ventricular Noncompaction 1
Resumo:
We appreciate the comments and concerns expressed by Arakawa and colleagues regarding our article, titled “Pulsatile control of rotary blood pumps: Does the modulation waveform matter?”1 Unfortunately, we have to disagree with Arakawa and colleagues. As is obvious from the title of our article, it investigates the effect of different waveforms on the heart–device interaction. In contrast to the authors' claim, this is the first article in the literature that uses basic waveforms (sine, triangle, saw tooth, and rectangular) with different phase shifts to examines their impact on left ventricular unloading. The previous publications2, 3 and 4 just varied the pump speed during systole and diastole, which was first reported by Bearnson and associates5 in 1996, and studied its effect on aortic pressure, coronary flow, and end-diastolic volume. We should mention that dp/dtmax is a load-sensitive parameter of contractility and not representative for the degree of unloading. Moreover, none of the aforementioned reports has studied mechanical unloading and in particular the stroke work of the left ventricle. Our method is unique because we do not just alternate between high and low speed but have accurate control of the waveform because of the direct drive system of Levitronix Technologies LLC (Waltham, Mass) and a custom-developed pump controller. Without referring, Arakawa and associates state “several previous studies have already reported the coronary flow diminishes as the left ventricular assist device support increases.” It should be noted that all the waveforms used in our study have 2000 rpm average value with 1000 rpm amplitude, which is not an excessive speed for the CentriMag rotary pump (Levitronix) to collapse the ventricle and diminish the coronary flow. We agree with Arakawa and coworkers that there is a need for a heart failure model to come to more relevant results with respect to clinical expectations. However, we have explored many existing models, including species and breeds that have a native proneness to cardiomyopathy, but all of them differ from the genetic presentation in humans. We certainly do not believe that the use of microembolization, in which the coronary circulation is impaired by the injection of microspheres, would form a good model from which to draw conclusions about coronary flow change under different loading conditions. A model would be needed in which either an infarct is created to mimic ischemic heart failure or the coronary circulation remains untouched to simulate, for instance, dilated cardiomyopathy. Furthermore, in discussion we clearly mention that “lack of heart failure is a major limitation of our study.” We also believe that unloading is not the only factor of the cardiac functional recovery, and an excessive unloading of the left ventricle might lead to cardiac tissue atrophy. Therefore, in our article we mention that control of the level of cardiac unloading by assist devices has been suggested as a mechanical tool to promote recovery, and more studies are required to find better strategies for the speed modulation of rotary pumps and to achieve an optimal heart load control to enhance myocardial recovery. Finally, there are many publications about pulsing rotary blood pumps and it was impossible to include them all. We preferred to reference some of the earlier basic works such as an original research by Bearnson and coworkers5 and another article published by our group,6 which is more relevant.
Resumo:
Cardiolipin (CL) is responsible for modulation of activities of various enzymes involved in oxidative phosphorylation. Although energy production decreases in heart failure (HF), regulation of cardiolipin during HF development is unknown. Enzymes involved in cardiac cardiolipin synthesis and remodeling were studied in spontaneously hypertensive HF (SHHF) rats, explanted hearts from human HF patients, and nonfailing Sprague Dawley (SD) rats. The biosynthetic enzymes cytidinediphosphatediacylglycerol synthetase (CDS), phosphatidylglycerolphosphate synthase (PGPS) and cardiolipin synthase (CLS) were investigated. Mitochondrial CDS activity and CDS-1 mRNA increased in HF whereas CDS-2 mRNA in SHHF and humans, not in SD rats, decreased. PGPS activity, but not mRNA, increased in SHHF. CLS activity and mRNA decreased in SHHF, but mRNA was not significantly altered in humans. Cardiolipin remodeling enzymes, monolysocardiolipin acyltransferase (MLCL AT) and tafazzin, showed variable changes during HF. MLCL AT activity increased in SHHF. Tafazzin mRNA decreased in SHHF and human HF, but not in SD rats. The gene expression of acyl-CoA: lysocardiolipin acyltransferase-1, an endoplasmic reticulum MLCL AT, remained unaltered in SHHF rats. The results provide mechanisms whereby both cardiolipin biosynthesis and remodeling are altered during HF. Increases in CDS-1, PGPS, and MLCL AT suggest compensatory mechanisms during the development of HF. Human and SD data imply that similar trends may occur in human HF, but not during nonpathological aging, consistent with previous cardiolipin studies.
Resumo:
AIMS No standardized local thrombolysis regimen exists for the treatment of pulmonary embolism (PE). We retrospectively investigated efficacy and safety of fixed low-dose ultrasound-assisted catheter-directed thrombolysis (USAT) for intermediate- and high-risk PE. METHODS AND RESULTS Fifty-two patients (65 ± 14 years) of whom 14 had high-risk PE (troponin positive in all) and 38 intermediate-risk PE (troponin positive in 91%) were treated with intravenous unfractionated heparin and USAT using 10 mg of recombinant tissue plasminogen activator per device over the course of 15 h. Bilateral USAT was performed in 83% of patients. During 3-month follow-up, two [3.8%; 95% confidence interval (CI) 0.5-13%] patients died (one from cardiogenic shock and one from recurrent PE). Major non-fatal bleeding occurred in two (3.8%; 95% CI, 0.5-13%) patients: one intrathoracic bleeding after cardiopulmonary resuscitation requiring transfusion, one intrapulmonary bleeding requiring lobectomy. Mean pulmonary artery pressure decreased from 37 ± 9 mmHg at baseline to 25 ± 8 mmHg at 15 h (P < 0.001) and cardiac index increased from 2.0 ± 0.7 to 2.7 ± 0.9 L/min/m(2) (P < 0.001). Echocardiographic right-to-left ventricular end-diastolic dimension ratio decreased from 1.42 ± 0.21 at baseline to 1.06 ± 0.23 at 24 h (n = 21; P < 0.001). The greatest haemodynamic benefit from USAT was found in patients with high-risk PE and in those with symptom duration < 14 days. CONCLUSION A standardized catheter intervention approach using fixed low-dose USAT for the treatment of intermediate- and high-risk PE was associated with rapid improvement in haemodynamic parameters and low rates of bleeding complications and mortality.
Resumo:
Recently developed technologies allow aortic valve implantation off-pump in a beating heart. In this procedure, the native, stenotic aortic valve is not removed, but simply crushed by a pressure balloon mounted on a percutaneous catheter. Removal of the native aortic cusps before valve replacement may reduce the incidence of annular or cuspal calcium embolization and late perivalvular leaks and increase implantable valve size. However, a temporary valve system in the ascending aorta may be necessary to maintain hemodynamic stability by reducing acute aortic regurgitation and left ventricular volume overload. This study evaluates the hemodynamic effects of a wire-mounted, monoleaflet, temporary valve apparatus in a mechanical cardiovascular simulator. Aortic flow, systemic pressure and left ventricular pressure were continuously monitored. An intraluminal camera obtained real-time proximal and distal images of the valve in operation. Insertion of the parachute valve in the simulator increased diastolic pressure from 7 to 38 mm Hg. Cardiac output increased from 2.08 to 4.66 L/min and regurgitant volume decreased from 65 to 23 mL. In conclusion, placement of a temporary valve in the ascending aorta may help maintain hemodynamic stability and improve off-pump aortic valve replacement.
Resumo:
BACKGROUND In patients with acute pulmonary embolism, systemic thrombolysis improves right ventricular (RV) dilatation, is associated with major bleeding, and is withheld in many patients at risk. This multicenter randomized, controlled trial investigated whether ultrasound-assisted catheter-directed thrombolysis (USAT) is superior to anticoagulation alone in the reversal of RV dilatation in intermediate-risk patients. METHODS AND RESULTS Fifty-nine patients (63±14 years) with acute main or lower lobe pulmonary embolism and echocardiographic RV to left ventricular dimension (RV/LV) ratio ≥1.0 were randomized to receive unfractionated heparin and an USAT regimen of 10 to 20 mg recombinant tissue plasminogen activator over 15 hours (n=30; USAT group) or unfractionated heparin alone (n=29; heparin group). Primary outcome was the difference in the RV/LV ratio from baseline to 24 hours. Safety outcomes included death, major and minor bleeding, and recurrent venous thromboembolism at 90 days. In the USAT group, the mean RV/LV ratio was reduced from 1.28±0.19 at baseline to 0.99±0.17 at 24 hours (P<0.001); in the heparin group, mean RV/LV ratios were 1.20±0.14 and 1.17±0.20, respectively (P=0.31). The mean decrease in RV/LV ratio from baseline to 24 hours was 0.30±0.20 versus 0.03±0.16 (P<0.001), respectively. At 90 days, there was 1 death (in the heparin group), no major bleeding, 4 minor bleeding episodes (3 in the USAT group and 1 in the heparin group; P=0.61), and no recurrent venous thromboembolism. CONCLUSIONS In patients with pulmonary embolism at intermediate risk, a standardized USAT regimen was superior to anticoagulation with heparin alone in reversing RV dilatation at 24 hours, without an increase in bleeding complications. CLINICAL TRIAL REGISTRATION URL http://www.clinicaltrials.gov. Unique identifier: NCT01166997.
Resumo:
OBJECTIVES This study aimed to demonstrate that the presence of late gadolinium enhancement (LGE) is a predictor of death and other adverse events in patients with suspected cardiac sarcoidosis. BACKGROUND Cardiac sarcoidosis is the most important cause of patient mortality in systemic sarcoidosis, yielding a 5-year mortality rate between 25% and 66% despite immunosuppressive treatment. Other groups have shown that LGE may hold promise in predicting future adverse events in this patient group. METHODS We included 155 consecutive patients with systemic sarcoidosis who underwent cardiac magnetic resonance (CMR) for workup of suspected cardiac sarcoid involvement. The median follow-up time was 2.6 years. Primary endpoints were death, aborted sudden cardiac death, and appropriate implantable cardioverter-defibrillator (ICD) discharge. Secondary endpoints were ventricular tachycardia (VT) and nonsustained VT. RESULTS LGE was present in 39 patients (25.5%). The presence of LGE yields a Cox hazard ratio (HR) of 31.6 for death, aborted sudden cardiac death, or appropriate ICD discharge, and of 33.9 for any event. This is superior to functional or clinical parameters such as left ventricular (LV) ejection fraction (EF), LV end-diastolic volume, or presentation as heart failure, yielding HRs between 0.99 (per % increase LVEF) and 1.004 (presentation as heart failure), and between 0.94 and 1.2 for potentially lethal or other adverse events, respectively. Except for 1 patient dying from pulmonary infection, no patient without LGE died or experienced any event during follow-up, even if the LV was enlarged and the LVEF severely impaired. CONCLUSIONS Among our population of sarcoid patients with nonspecific symptoms, the presence of myocardial scar indicated by LGE was the best independent predictor of potentially lethal events, as well as other adverse events, yielding a Cox HR of 31.6 and of 33.9, respectively. These data support the necessity for future large, longitudinal follow-up studies to definitely establish LGE as an independent predictor of cardiac death in sarcoidosis, as well as to evaluate the incremental prognostic value of additional parameters.
Resumo:
Introduction The aim of this study was to determine which single measurement on post-mortem cardiac MR reflects actual heart weight as measured at autopsy, assess the intra- and inter-observer reliability of MR measurements, derive a formula to predict heart weight from MR measurements and test the accuracy of the formula to prospectively predict heart weight. Materials and methods 53 human cadavers underwent post-mortem cardiac MR and forensic autopsy. In Phase 1, left ventricular area and wall thickness were measured on short axis and four chamber view images of 29 cases. All measurements were correlated to heart weight at autopsy using linear regression analysis. In Phase 2, single left ventricular area measurements on four chamber view images (LVA_4C) from 24 cases were used to predict heart weight at autopsy based on equations derived during Phase 1. Intra-class correlation coefficient (ICC) was used to determine inter- and intra-reader agreement. Results Heart weight strongly correlates with LVA_4C (r=0.78 M; p<0.001). Intra-reader and inter-reader reliability was excellent for LVA_4C (ICC=0.81–0.91; p<0.001 and ICC=0.90; p<0.001 respectively). A simplified formula for heart weight ([g]≈LVA_4C [mm2]×0.11) was derived based on linear regression analysis. Conclusions This study shows that single circumferential area measurements of the left ventricle in the four chamber view on post-mortem cardiac MR reflect actual heart weight as measured at autopsy. These measurements yield an excellent intra- and inter-reader reliability and can be used to predict heart weight prior to autopsy or to give a reasonable estimate of heart weight in cases where autopsy is not performed.
Resumo:
INTRODUCTION Hemodynamic management in intensive care patients guided by blood pressure and flow measurements often do not sufficiently reveal common hemodynamic problems. Trans-esophageal echocardiography (TEE) allows for direct measurement of cardiac volumes and function. A new miniaturized probe for TEE (mTEE) potentially provides a rapid and simplified approach to monitor cardiac function. The aim of the study was to assess the feasibility of hemodynamic monitoring using mTEE in critically ill patients after a brief operator training period. METHODS In the context of the introduction of mTEE in a large ICU, 14 ICU staff specialists with no previous TEE experience received six hours of training as mTEE operators. The feasibility of mTEE and the quality of the obtained hemodynamic information were assessed. Three standard views were acquired in hemodynamically unstable patients: 1) for assessment of left ventricular function (LV) fractional area change (FAC) was obtained from a trans-gastric mid-esophageal short axis view, 2) right ventricular (RV) size was obtained from mid-esophageal four chamber view, and 3) superior vena cava collapsibility for detection of hypovolemia was assessed from mid-esophageal ascending aortic short axis view. Off-line blinded assessment by an expert cardiologist was considered as a reference. Inter-rater agreement was assessed using Chi-square tests or correlation analysis as appropriate. RESULTS In 55 patients, 148 mTEE examinations were performed. Acquisition of loops in sufficient quality was possible in 110 examinations for trans-gastric mid-esophageal short axis, 118 examinations for mid-esophageal four chamber and 125 examinations for mid-esophageal ascending aortic short axis view. Inter-rater agreement (Kappa) between ICU mTEE operators and the reference was 0.62 for estimates of LV function, 0.65 for RV dilatation, 0.76 for hypovolemia and 0.77 for occurrence of pericardial effusion (all P < 0.0001). There was a significant correlation between the FAC measured by ICU operators and the reference (r = 0.794, P (one-tailed) < 0.0001). CONCLUSIONS Echocardiographic examinations using mTEE after brief bed-side training were feasible and of sufficient quality in a majority of examined ICU patients with good inter-rater reliability between mTEE operators and an expert cardiologist. Further studies are required to assess the impact of hemodynamic monitoring by mTEE on relevant patient outcomes.
Resumo:
Aims: The aim of this study was to identify predictors of adverse events among patients with ST-elevation myocardial infarction (STEMI) undergoing contemporary primary percutaneous coronary intervention (PCI). Methods and results: Individual data of 2,655 patients from two primary PCI trials (EXAMINATION, N=1,504; COMFORTABLE AMI, N=1,161) with identical endpoint definitions and event adjudication were pooled. Predictors of all-cause death or any reinfarction and definite stent thrombosis (ST) and target lesion revascularisation (TLR) outcomes at one year were identified by multivariable Cox regression analysis. Killip class III or IV was the strongest predictor of all-cause death or any reinfarction (OR 5.11, 95% CI: 2.48-10.52), definite ST (OR 7.74, 95% CI: 2.87-20.93), and TLR (OR 2.88, 95% CI: 1.17-7.06). Impaired left ventricular ejection fraction (OR 4.77, 95% CI: 2.10-10.82), final TIMI flow 0-2 (OR 1.93, 95% CI: 1.05-3.54), arterial hypertension (OR 1.69, 95% CI: 1.11-2.59), age (OR 1.68, 95% CI: 1.41-2.01), and peak CK (OR 1.25, 95% CI: 1.02-1.54) were independent predictors of all-cause death or any reinfarction. Allocation to treatment with DES was an independent predictor of a lower risk of definite ST (OR 0.35, 95% CI: 0.16-0.74) and any TLR (OR 0.34, 95% CI: 0.21-0.54). Conclusions: Killip class remains the strongest predictor of all-cause death or any reinfarction among STEMI patients undergoing primary PCI. DES use independently predicts a lower risk of TLR and definite ST compared with BMS. The COMFORTABLE AMI trial is registered at: http://www.clinicaltrials.gov/ct2/show/NCT00962416. The EXAMINATION trial is registered at: http://www.clinicaltrials.gov/ct2/show/NCT00828087.
Resumo:
OBJECTIVES This study aimed to update the Logistic Clinical SYNTAX score to predict 3-year survival after percutaneous coronary intervention (PCI) and compare the performance with the SYNTAX score alone. BACKGROUND The SYNTAX score is a well-established angiographic tool to predict long-term outcomes after PCI. The Logistic Clinical SYNTAX score, developed by combining clinical variables with the anatomic SYNTAX score, has been shown to perform better than the SYNTAX score alone in predicting 1-year outcomes after PCI. However, the ability of this score to predict long-term survival is unknown. METHODS Patient-level data (N = 6,304, 399 deaths within 3 years) from 7 contemporary PCI trials were analyzed. We revised the overall risk and the predictor effects in the core model (SYNTAX score, age, creatinine clearance, and left ventricular ejection fraction) using Cox regression analysis to predict mortality at 3 years. We also updated the extended model by combining the core model with additional independent predictors of 3-year mortality (i.e., diabetes mellitus, peripheral vascular disease, and body mass index). RESULTS The revised Logistic Clinical SYNTAX models showed better discriminative ability than the anatomic SYNTAX score for the prediction of 3-year mortality after PCI (c-index: SYNTAX score, 0.61; core model, 0.71; and extended model, 0.73 in a cross-validation procedure). The extended model in particular performed better in differentiating low- and intermediate-risk groups. CONCLUSIONS Risk scores combining clinical characteristics with the anatomic SYNTAX score substantially better predict 3-year mortality than the SYNTAX score alone and should be used for long-term risk stratification of patients undergoing PCI.
Resumo:
OBJECTIVES To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. MATERIAL AND METHODS Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. RESULTS In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 °C resulted in better tissue discrimination. CONCLUSION Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. KEY POINTS • Postmortem MR quantification is feasible for soft tissue discrimination and characterization • Temperature dependence of the T1 values challenges the MR quantification approach • The results provide the basis for computer-aided postmortem MRI diagnosis • Diagnostic criteria may also be applied for living patients.
Resumo:
OBJECTIVE Algorithms to predict the future long-term risk of patients with stable coronary artery disease (CAD) are rare. The VIenna and Ludwigshafen CAD (VILCAD) risk score was one of the first scores specifically tailored for this clinically important patient population. The aim of this study was to refine risk prediction in stable CAD creating a new prediction model encompassing various pathophysiological pathways. Therefore, we assessed the predictive power of 135 novel biomarkers for long-term mortality in patients with stable CAD. DESIGN, SETTING AND SUBJECTS We included 1275 patients with stable CAD from the LUdwigshafen RIsk and Cardiovascular health study with a median follow-up of 9.8 years to investigate whether the predictive power of the VILCAD score could be improved by the addition of novel biomarkers. Additional biomarkers were selected in a bootstrapping procedure based on Cox regression to determine the most informative predictors of mortality. RESULTS The final multivariable model encompassed nine clinical and biochemical markers: age, sex, left ventricular ejection fraction (LVEF), heart rate, N-terminal pro-brain natriuretic peptide, cystatin C, renin, 25OH-vitamin D3 and haemoglobin A1c. The extended VILCAD biomarker score achieved a significantly improved C-statistic (0.78 vs. 0.73; P = 0.035) and net reclassification index (14.9%; P < 0.001) compared to the original VILCAD score. Omitting LVEF, which might not be readily measureable in clinical practice, slightly reduced the accuracy of the new BIO-VILCAD score but still significantly improved risk classification (net reclassification improvement 12.5%; P < 0.001). CONCLUSION The VILCAD biomarker score based on routine parameters complemented by novel biomarkers outperforms previous risk algorithms and allows more accurate classification of patients with stable CAD, enabling physicians to choose more personalized treatment regimens for their patients.
Resumo:
BACKGROUND Up to 1 in 6 patients undergoing transcatheter aortic valve implantation (TAVI) present with low-ejection fraction, low-gradient (LEF-LG) severe aortic stenosis and concomitant relevant mitral regurgitation (MR) is present in 30% to 55% of these patients. The effect of MR on clinical outcomes of LEF-LG patients undergoing TAVI is unknown. METHODS AND RESULTS Of 606 consecutive patients undergoing TAVI, 113 (18.7%) patients with LEF-LG severe aortic stenosis (mean gradient ≤40 mm Hg, aortic valve area <1.0 cm(2), left ventricular ejection fraction <50%) were analyzed. LEF-LG patients were dichotomized into ≤mild MR (n=52) and ≥moderate MR (n=61). Primary end point was all-cause mortality at 1 year. No differences in mortality were observed at 30 days (P=0.76). At 1 year, LEF-LG patients with ≥moderate MR had an adjusted 3-fold higher rate of all-cause mortality (11.5% versus 38.1%; adjusted hazard ratio, 3.27 [95% confidence interval, 1.31-8.15]; P=0.011), as compared with LEF-LG patients with ≤mild MR. Mortality was mainly driven by cardiac death (adjusted hazard ratio, 4.62; P=0.005). As compared with LEF-LG patients with ≥moderate MR assigned to medical therapy, LEF-LG patients with ≥moderate MR undergoing TAVI had significantly lower all-cause mortality (hazard ratio, 0.38; 95% confidence interval, 0.019-0.75) at 1 year. CONCLUSIONS Moderate or severe MR is a strong independent predictor of late mortality in LEF-LG patients undergoing TAVI. However, LEF-LG patients assigned to medical therapy have a dismal prognosis independent of MR severity suggesting that TAVI should not be withheld from symptomatic patients with LEF-LG severe aortic stenosis even in the presence of moderate or severe MR.
Resumo:
The Barostim neo ™ system is a novel implantable device that activates the carotid baroreflex. It decreases the sympathetic activity and inhibits the renin system, which results in reduced blood pressure and heart rate. In patients with resistant hypertension, electrically activation of the baroreflex leads to an average decrease in systolic blood pressure of 38, 36, 40 and 53 mmHg at 1, 2, 3 and 4 years, respectively. Additionally, cardiac remodelling with reduced left ventricular mass and posterior wall thickness has been observed in long-term studies. In a limited number of patients with heart failure, baroreflex activation therapy leads to a decrease in muscle sympathetic nerve activity and to improved quality of life and functional capacities. The implantation procedure is safe and associated with risks comparable with those of other active implantable devices. Barostim neo is currently available in several European countries.
Resumo:
Transcatheter aortic valve implantation is a feasible therapeutic option for selected patients with severe aortic stenosis and high or prohibitive risk for standard surgery. Lung transplant recipients are often considered high-risk patients for heart surgery because of their specific transplant-associated characteristics and comorbidities. We report a case of successful transfemoral transcatheter aortic valve replacement in a lung transplant recipient with a symptomatic severe aortic stenosis, severe left ventricular dysfunction, and end-stage renal failure 9 years after bilateral lung transplantation.