980 resultados para Laser a scansioneTessituraConglomerato bituminosoMesh 3D
Resumo:
A new 3D cadmium(II) coordination polymer, Cd(C2O4)(0.5)Cl(H2O)](n) (1) has been synthesized from a mixture of CdCl2. H2O and (NH4)(2)C2O4 in a slightly acidic pH. Its molecular structure was determined by single crystal X-ray diffraction which reveals that the new polymeric structure consists of simultaneous mu(4)-oxalato, mu-aquo, and mu-chlorido bridges between the metal centers, embedded in distorted pentagonal bipyramidal geometries. On thermal analysis compound exhibits high thermal stability up to 330 degrees C. Compound 1 also exhibits strong fluorescent emission. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
We propose and experimentally demonstrate a three-dimensional (3D) image reconstruction methodology based on Taylor series approximation (TSA) in a Bayesian image reconstruction formulation. TSA incorporates the requirement of analyticity in the image domain, and acts as a finite impulse response filter. This technique is validated on images obtained from widefield, confocal laser scanning fluorescence microscopy and two-photon excited 4pi (2PE-4pi) fluorescence microscopy. Studies on simulated 3D objects, mitochondria-tagged yeast cells (labeled with Mitotracker Orange) and mitochondrial networks (tagged with Green fluorescent protein) show a signal-to-background improvement of 40% and resolution enhancement from 360 to 240 nm. This technique can easily be extended to other imaging modalities (single plane illumination microscopy (SPIM), individual molecule localization SPIM, stimulated emission depletion microscopy and its variants).
Resumo:
In this work, we synthesized bulk amorphous GeGaS glass by conventional melt quenching technique. Amorphous nature of the glass is confirmed using X-ray diffraction. We fabricated the channel waveguides on this glass using the ultrafast laser inscription technique. The waveguides are written on this glass 100 mu m below the surface of the glass with a separation of 50 ae m by focusing the laser beam into the material using 0.67 NA lens. The laser parameters are set to 350 fs pulse duration at 100 KHz repetition rate. A range of writing energies with translation speeds 1 mm/s, 2 mm/s, 3 mm/s and 4 mm/s were investigated. After fabrication the waveguides facets were ground and polished to the optical quality to remove any tapering of the waveguide close to the edges. We characterized the loss measurement by butt coupling method and the mode field image of the waveguides has been captured to compare with the mode field image of fibers. Also we compared the asymmetry in the shape of the waveguide and its photo structural change using Raman spectra.
Resumo:
We report here, a finite difference thermal diffusion (FDTD) model for controlling the cross-section and the guiding nature of the buried channel waveguides fabricated on GeGaS bulk glasses using the direct laser writing technique. Optimization of the laser parameters for guiding at wavelength 1550 nm is done experimentally and compared with the theoretical values estimated by FDTD model. The mode field diameter (MFD) between 5.294 mu m and 24.706 mu m were attained by suitable selection of writing speed (1mm/s to 4 mm/s) and pulse energy (623 nJ to 806 nJ) of the laser at a fixed repletion rate of 100 kHz. Transition from single-mode to multi-mode waveguide is observed at pulse energy 806nJ as a consequence of heat accumulation. The thermal diffusion model fits well for single-mode waveguides with the exception of multi-mode waveguides.
Resumo:
Many of the conducting polymers though having good material property are not solution processable. Hence an alternate method of fabrication of film by pulsed laser deposition, was explored in this work. PDTCPA, a donor-acceptor-donor type of polymer having absorption from 900 nm to 300 nm was deposited by both UV and IR laser to understand the effect of deposition parameters on the film quality. It was observed that the laser ablation of PDTCPA doesn't alter its chemical structure hence retaining the chemical integrity of the polymer. Microscopic studies of the ablated film shows that the IR laser ablated films were particulate in nature while UV laser ablated films are deposited as smooth continuous layer. The morphology of the film influences its electrical characteristics as current-voltage characteristic of these films shows that films deposited by UV laser are p rectifying while those by IR laser are more of resistor in nature.
Resumo:
The issue of intermittency in numerical solutions of the 3D Navier-Stokes equations on a periodic box 0, L](3) is addressed through four sets of numerical simulations that calculate a new set of variables defined by D-m(t) = (pi(-1)(0) Omega(m))(alpha m) for 1 <= m <= infinity where alpha(m) = 2m/(4m - 3) and Omega(m)(t)](2m) = L-3 integral(v) vertical bar omega vertical bar(2m) dV with pi(0) = vL(-2). All four simulations unexpectedly show that the D-m are ordered for m = 1,..., 9 such that Dm+1 < D-m. Moreover, the D-m squeeze together such that Dm+1/D-m NE arrow 1 as m increases. The values of D-1 lie far above the values of the rest of the D-m, giving rise to a suggestion that a depletion of nonlinearity is occurring which could be the cause of Navier-Stokes regularity. The first simulation is of very anisotropic decaying turbulence; the second and third are of decaying isotropic turbulence from random initial conditions and forced isotropic turbulence at fixed Grashof number respectively; the fourth is of very-high-Reynolds-number forced, stationary, isotropic turbulence at up to resolutions of 4096(3).
Resumo:
Four-dimensional fluorescence microscopy-which records 3D image information as a function of time-provides an unbiased way of tracking dynamic behavior of subcellular components in living samples and capturing key events in complex macromolecular processes. Unfortunately, the combination of phototoxicity and photobleaching can severely limit the density or duration of sampling, thereby limiting the biological information that can be obtained. Although widefield microscopy provides a very light-efficient way of imaging, obtaining high-quality reconstructions requires deconvolution to remove optical aberrations. Unfortunately, most deconvolution methods perform very poorly at low signal-to-noise ratios, thereby requiring moderate photon doses to obtain acceptable resolution. We present a unique deconvolution method that combines an entropy-based regularization function with kernels that can exploit general spatial characteristics of the fluorescence image to push the required dose to extreme low levels, resulting in an enabling technology for high-resolution in vivo biological imaging.
Resumo:
In this paper we report the quantitative oxygen quenching effect on laser-induced fluorescence of acetone, methyl ethyl ketone, and 3-pentanone at low pressures (approximate to 700torr) with oxygen partial pressures up to 450torr. Nitrogen was used as a bath gas in which these molecular tracers were added in different quantities according to their vapor pressure at room temperature. These tracers were excited by using a frequency-quadrupled, Q-switched, Nd:YAG laser (266nm). Stern-Volmer plots were found to be linear for all the tracers, suggesting that quenching is collisional in nature. Stern-Volmer coefficients (k(sv)) and quenching rate constants (k(q)) were calculated from Stern-Volmer plots. The effects of oxygen on the laser-induced fluorescence of acetone, methyl ethyl ketone, and 3-pentanone were compared with each other. Further, the Smoluchowski theory was used to calculate the quenching parameters and compared with the experimental results.
Resumo:
Waveguides were fabricated on GeGaSEr chalcogenide glass using ultrafast laser inscription method. The thermal diffusion model is discussed for understanding the light matter interaction and shown the effect of net-fluence in waveguide formation on chalcogenide glass. (C) 2012 Optical Society of America
Resumo:
We report a simple method to fabricate multifunctional polyelectrolyte thin films to load and deliver the therapeutic drugs. The multilayer thin films were assembled by the electrostatic adsorption of poly (allylamine hydrochloride) (PAH) and dextran sulfate (DS). The silver nanoparticles (Ag NPs) biosynthesized from novel Hybanthus enneaspermus leaf extract as the reducing agent were successfully incorporated into the film. The biosynthesized Ag NPs showed excellent antimicrobial activity against the range of enteropathogens, which could be significantly enhanced when used with commercial antibiotics. The assembled silver nano composite multilayer films showed rupture and deformation when they are exposed to laser. The Ag NPs act as an energy absorption center, locally heat up the film and rupture it under laser treatment. The antibacterial drug, moxifloxacin hydrochloride (MH) was successfully loaded into the multilayer films. The total amount of MH release observed was about 63% which increased to 85% when subjected to laser light exposure. Thus, the polyelectrolyte thin film reported in our study has significant potential in the field of remote activated drug delivery, antibacterial coatings and wound dressings. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A new `generalized model predictive static programming (G-MPSP)' technique is presented in this paper in the continuous time framework for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints. A key feature of the technique is backward propagation of a small-dimensional weight matrix dynamics, using which the control history gets updated. This feature, as well as the fact that it leads to a static optimization problem, are the reasons for its high computational efficiency. It has been shown that under Euler integration, it is equivalent to the existing model predictive static programming technique, which operates on a discrete-time approximation of the problem. Performance of the proposed technique is demonstrated by solving a challenging three-dimensional impact angle constrained missile guidance problem. The problem demands that the missile must meet constraints on both azimuth and elevation angles in addition to achieving near zero miss distance, while minimizing the lateral acceleration demand throughout its flight path. Both stationary and maneuvering ground targets are considered in the simulation studies. Effectiveness of the proposed guidance has been verified by considering first order autopilot lag as well as various target maneuvers.
Resumo:
In the present work, we report spectroscopic studies of laser-induced plasmas produced by focusing the second harmonic (532nm) of a Nd:YAG laser onto the laminar flow of a liquid containing chromium. The plasma temperature is determined from the coupled Saha-Boltzmann plot and the electron density is evaluated from the Stark broadening of an ionic line of chromium Cr(II)] at 267.7nm. Our results reveal a decrease in plasma temperature with an increase in Cr concentration up to a certain concentration level; after that, it becomes approximately constant, while the electron density increases with an increase in analyte (Cr) concentration in liquid matrix.
Resumo:
In this article we present the syntheses, characterizations, magnetic and luminescence properties of five 3d-metal complexes, Co(tib)(1,2-phda)](n)center dot(H2O)(n) (1), Co-3(tib)(2)(1,3-phda)(3)(H2O)](n)center dot(H2O)(2n) (2), Co-5(tib)(3)(1,4-phda)(5)(H2O)(3)](n)center dot(H2O)(7n) (3), Zn-3(tib)(2)(1,3-phda)(3)](n)center dot(H2O)(4n) (4), and Mn(tib)(2)(H2O)(2)](n)center dot(1,4-phdaH)(2n)center dot(H2O)(4n) (5), obtained from the use of isomeric phenylenediacetates (phda) and the neutral 1,3,5-tris(1-imidazolyl)benzene (tib) ligand. Single crystal X-ray structures showed that 1 constitutes 3,5-connected 2-nodal nets with a double-layered two-dimensional (2D) structure, while 2 forms an interpenetrated 2D network (3,4-connected 3-nodal net). Complex 3 has a complicated three-dimensional structure with 10-nodal 3,4,5-connected nets. Complex 4, although it resembles 2 in stoichiometry and basic building structures, forms a very different overall 2D assembly. In complex 5 the dicarboxylic acid, upon losing only one of the acidic protons, does not take part in coordination; instead it forms a complicated hydrogen bonding network with water molecules. Magnetic susceptibility measurements over a wide range of temperatures revealed that the metal ions exchange very poorly through the tib ligand, but for the Co(II) complexes the effects of nonquenched orbital contributions are prominent. The 3d(10) metal complex 4 showed strong luminescence with lambda(max) = 415 nm (lambda(ex) = 360 nm).
Resumo:
The electrocaloric effect (ECE) of 0.85PbMg(1/3)Nb(2/3)O(3-)0.15PbTiO(3) (0.85PMN-0.15PT) thin films deposited on (111) Pt/TiO2/SiO2/Si substrate by pulsed laser deposition (PLD) has been calculated. The reversible adiabatic temperature was calculated indirectly using the Maxwell's relation Delta T = -T/C rho integral(E2)(E1) (partial derivative P/partial derivative T)(sigma,E)dE. Permittivity and P-E measurements show an anomaly at 11 degrees C on heating only. This anomaly previously reported are claimed to arise due to the PNR depolarization upon heating. The absence of this anomaly during cooling suggests that no structural phase transition takes place. A negative electrocaloric effect is observed which is explained by the increase in the entropy term.
Resumo:
The aim of this work is to enable seamless transformation of product concepts to CAD models. This necessitates availability of 3D product sketches. The present work concerns intuitive generation of 3D strokes and intrinsic support for space sharing and articulation for the components of the product being sketched. Direct creation of 3D strokes in air lacks in precision, stability and control. The inadequacy of proprioceptive feedback for the task is complimented in this work with stereo vision and haptics. Three novel methods based on pencil-paper interaction analogy for haptic rendering of strokes have been investigated. The pen-tilt based rendering is simpler and found to be more effective. For the spatial conformity, two modes of constraints for the stylus movements, corresponding to the motions on a control surface and in a control volume have been studied using novel reactive and field based haptic rendering schemes. The field based haptics, which in effect creates an attractive force field near a surface, though non-realistic, provided highly effective support for the control-surface constraints. The efficacy of the reactive haptic rendering scheme for the constrained environments has been demonstrated using scribble strokes. This can enable distributed collaborative 3D concept development. The notion of motion constraints, defined through sketch strokes enables intuitive generation of articulated 3D sketches and direct exploration of motion annotations found in most product concepts. The work, thus, establishes that modeling of the constraints is a central issue in 3D sketching.