914 resultados para Lactic acid.
Resumo:
The aim of this research project is to evaluate whether or not pullulan films are suitable to buccal drug delivery of a phosphodiesterase5 (PDE5) inhibitor yonkenafil, which was discovered in our research group and currently is under phase II clinical trial for treatment of erectile dysfunction. Variable formulations of pullulan films were designed and the films were prepared. Mechanical properties of the films, in vitro drug release and polymer dissolution, in vitro drug penetration through porcine esophageal mucosa were investigated. The plasticization effects of solvents, polyols and acids to the films were studied by tensile test, and differential scanning calorimetry, thermogravimetric analysis, fourier transform-infrared, scanning electron microscopy, optical microscopy was applied to analyse the structure and chemical-bonding between pullulan and the additives within the films. Release mathematics models were used in the study of the mechanism of drug releases and polymer dissolutions. Ethanol, menthol, fatty acids, and sodium dodecyl sulphate were employed as penetration enhancers to pretreat the tissue. Various plasticizers and acids were applied into the films and the result showed polyethylene glycol 400 and 600 had the excellent plasticization effect on the drug-free pullulan films, while lactic acid was the best plasticizer for the drug-loaded films. Both PEG400 and lactic acid had a great effect on the drug release from the films in vitro, and all the results indicated that the hydroxyl and carboxyl groups of pullulan and the additives influenced the mechanical properties of the films significantly, and also altered drug release mechanisms. Ethanol shows the greatest enhancing ability on the drug permeation through the porcine esophageal mucosa. A possible mechanism for this is that ethanol interferes with the structure of the lipids in the mucosa, resulting in increased partitioning of the drug into the membrane.
Resumo:
The application of a rapid screening method for the construction of ternary phase diagrams is described for the first time, providing detailed visualization of phase boundaries in solvent-mediated blends. Our new approach rapidly identifies ternary blend compositions that afford optically clear materials, useful for applications where transparent films are necessary. The use of 96-well plates and a scanning plate reader has enabled rapid optical characterization to be carried out by transmission spectrophotometry (450 nm), whilst the nature and extent of crystallinity was examined subsequently by wide angle X-ray scattering (WAXS). The moderating effect of cellulose acetate butyrate can be visualized as driving the position of the phase boundaries in poly(l-lactic acid)/polycaprolactone (PLLA/PCL) blends. More surprisingly, the boundaries are critically dependent on the molecular weight of the crystallizable PLLA and PCL, with higher molecular weight polymers leading to blends with reduced phase separation. On the other hand, the propensity to crystallize was more evident in shorter chains. WAXS provides a convenient way of characterizing the contribution of the individual blend components to the crystalline regions across the range of blend compositions. © 2013 Society of Chemical Industry.
Resumo:
Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria (Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(L-lactic acid) was quantified using the single fiber pullout test. © 2008 American Chemical Society.
Resumo:
Mathematical modeling may have different purposes in chemical and biochemical engineering sciences. One of them is to confirm or to reject kinetic models for certain processes, or to evaluate the importance of some transport phenomena on the net chemical or biochemical reaction rate. In the present paper different microbial processes are considered and modeled for evaluation of kinetic constants for batch and continuous processes accomplished by free and immobilized microbial cells. The practical examples are from the field of wastewater treatment and biosynthesis of products, like enzymes, lactic acid, gluconic acid, etc. By the aid of mathematical modeling the kinetics and the type of inhibition are specified for microbial wastewater denitrification and biodegradation of halogenated hydrocarbons. The importance of free and immobilized cells and their separate contribution to the overall microbial process is also evaluated for some fermentation processes: gluconic acid production, dichloroethane biodegradation, lactic acid fermentation and monochloroacetic acid biodegradation.
Resumo:
This work has the main objective to obtain nano and microcrystals of cellulose, extracted from the pineapple leaf fibres (PALF), as reinforcement for the manufacture of biocomposite films with polymeric matrices of Poly(vinyl alcohol) (PVA) and Poly(lactic acid) (PLA). The polymer matrices and the nano and microcrystals of cellulose were characterised by means of TGA, FTIR and DSC. The analysis was performed on the pineapple leaves to identify the macro and micronutrients. The fibers of the leaves of the pineapple were extracted in a desfibradeira mechanical. The PALF extracted were washed to remove washable impurities and subsequently treated with sodium hydroxide (NaOH) and sodium hypochlorite (NaClO) in the removal of impurities, such as fat, grease, pectates, pectin and lignin. The processed PALF fibers were hydrolysed in sulfuric acid (H2SO4) at a concentration of 13.5 %, to obtain nano and microcrystals of cellulose. In the manufacture of biocomposite films, concentrations of cellulose, 0 %, 1 %, 3 %, 6 %, 9% and 12% were used as reinforcement to the matrices of PVA and PLA. The PVA was dissolved in distilled water at 80 ± 5 oC and the PLA was dissolved in dichloromethane at room temperature. The manufacture of biocompósitos in the form of films was carried out by "casting". Tests were carried out to study the water absorption by the films and mechanical test of resistance to traction according to ASTM D638-10 with a velocity of 50 mm/min.. Chi-square statistical test was used to check for the existence of significant differences in the level of 0.05: the lengths of the PALF, lengths of the nano and microcrystals of cellulose and the procedures used for the filtration using filter syringe of 0.2 μm or filtration and centrifugation. The hydrophilicity of biocompósitos was analysed by measuring the contact angle and the thickness of biocompósitos were compared as well as the results of tests of traction. Statistical T test - Student was also applied with the significance level (0.05). In biodegradation, Sturm test of standard D5209 was used. Nano and microcrystals of cellulose with lengths ranging from 7.33 nm to 186.17 nm were found. The PVA films showed average thicknesses of 0.153 μm and PLA 0.210 μm. There is a strong linear correlation directly proportional between the traction of the films of PVA and the concentration of cellulose in the films (composite) (0,7336), while the thickness of the film was correlated in 0.1404. Nano and microcrystals of cellulose and thickness together, correlated to 0.8740. While the correlation between the cellulose content and tensile strength was weak and inversely proportional (- 0,0057) and thickness in -0.2602, totaling -0,2659 in PLA films. This can be attributed to the nano and microcrystals of cellulose not fully adsorbed to the PLA matrix. In the comparison of the results of the traction of the two polymer matrices, the nano and microcrystals have helped in reducing the traction of the films (composite) of PLA. There was still the degradation of the film of PVA, within a period of 20 days, which was not seen in the PLA film, on the other hand, the observations made in the literature, the average time to start the degradation is above 60 days. What can be said that the films are biodegradable composites, with hydrophilicity and the nano and microcrystals of cellulose, contribute positively in the improvement of the results of polymer matrices used.
Resumo:
Considering the plant biodiversity in the Brazilian Northeast, whose components can be inserted into sustainable production systems, the jujube (Ziziphus joazeiro Mart.) emerges as to recovery of its fruit. The present study has as objective to characterize the fruit of the jujube under the physical, physicochemical and chemical approach and assess its conservation by spontaneous lactic fermentation under the influence of chloride, sodium, calcium and potassium. According to the legislation, vegetable acidified by fermentation that is subjected to lactic acid fermentation in order to achieve a final product pH less than or equal to 4.5. The results of the physical, chemical and physico-chemistry of ripe fruit jujube showed the potential of this species for agro-processing. The yield of edible portion (91.83%), soluble solids content (18,98º Brix), titratable acidity (0.14% citric acid), pH (5.30) and its composition, divided in moisture (79.01%), protein (2.01%), lipids (0.52%), carbohydrate (17.59%), fiber, ash (0.76%) and its minerals were consistent with the characteristic profile fruits, thus favoring the development of spontaneous lactic fermentation. The minimum pH and titratable acidity observed maximum in the fermentation process under the influence of mixtures of salts (NaCl and KCl NaCl2) values ranged from 3.4 to 3.7 and from 0.54 to 0.95 (% lactic acid), respectively. The profile of the lactic fermentation of fruit of jujube in brine, fermented microbiological quality and the result of analysis of primary sensory prepared preserved, the application of endorsed by the consumer sensory evaluation, more particularly, derived from fermented fruit preserved in the presence of chloride sodium, in accordance with the traditional techniques of lactic fermentation of vegetables. The results of sensory evaluation conducted with 100 consumers (tasters) revealed an acceptance rate equal to 78% of the preserve. Despite restrictions on the sensory acceptability of fermented under the influence of salts (KCl and CaCl2) substitutes sodium chloride, preserved these perspectives presented to balance the optimization of mixtures, health product safety and consumer awareness towards prefer a more healthy product with reduced sodium content.
Resumo:
Reported accidents involving the poisoning scorpions are still frequent in Brazil, mainly caused by Tityus serrulatus, known as yellow scorpion. Although antivenom sera are produced routinely by various government laboratories, the effectiveness of its use depends on how quickly treatment is initiated and efficiency in the production of antibodies by the immunized animals. In this study, the development of cationic polymeric nanoparticles of poly(lactic acid) aimed to create a modified delivery system for peptides and proteins of T. serrulatus venom, able to enhance the production of serum antibodies against the scorpion toxins. The cationic nanoparticles were obtained by a low energy nanoprecipitation, after study of the parameters’ variations effects over the physicochemical properties of the particles. The surface functionalization of the nanoparticles with the hyperbranched polyethyleneimine was proved by zeta potential analysis and enabled the adsorption by electrostatic interaction of different types of proteins. The protein loading efficiency of 40-80 % to bovine serum albumin (BSA) and 100 % to scorpion venom peptides evaluated by spectrophotometry and polyacrylamide gel electrophoresis confirmed the success of the selected parameters established for obtainment of nanoparticles, produced with size between 100 to 250 nm. The atomic force microscopy analysis and in vitro release showed that the spherical nanoparticles provided a sustained release profile of proteins by diffusion mechanism, demonstrating the potential for application of the nanoparticles in vivo.
Resumo:
Reported accidents involving the poisoning scorpions are still frequent in Brazil, mainly caused by Tityus serrulatus, known as yellow scorpion. Although antivenom sera are produced routinely by various government laboratories, the effectiveness of its use depends on how quickly treatment is initiated and efficiency in the production of antibodies by the immunized animals. In this study, the development of cationic polymeric nanoparticles of poly(lactic acid) aimed to create a modified delivery system for peptides and proteins of T. serrulatus venom, able to enhance the production of serum antibodies against the scorpion toxins. The cationic nanoparticles were obtained by a low energy nanoprecipitation, after study of the parameters’ variations effects over the physicochemical properties of the particles. The surface functionalization of the nanoparticles with the hyperbranched polyethyleneimine was proved by zeta potential analysis and enabled the adsorption by electrostatic interaction of different types of proteins. The protein loading efficiency of 40-80 % to bovine serum albumin (BSA) and 100 % to scorpion venom peptides evaluated by spectrophotometry and polyacrylamide gel electrophoresis confirmed the success of the selected parameters established for obtainment of nanoparticles, produced with size between 100 to 250 nm. The atomic force microscopy analysis and in vitro release showed that the spherical nanoparticles provided a sustained release profile of proteins by diffusion mechanism, demonstrating the potential for application of the nanoparticles in vivo.
Resumo:
Peer reviewed
Resumo:
Microwave annealing is an emerging technique for achieving ordered patterns of block copolymer films on substrates. Little is understood about the mechanisms of microphase separation during the microwave annealing process and how it promotes the microphase separation of the blocks. Here, we use controlled power microwave irradiation in the presence of tetrahydrofuran (THF) solvent, to achieve lateral microphase separation in high- lamellar-forming poly(styrene-b-lactic acid) PS-b-PLA. A highly ordered line pattern was formed within seconds on silicon, germanium and silicon on insulator (SOI) substrates. In-situ temperature measurement of the silicon substrate coupled to condition changes during "solvo-microwave" annealing allowed understanding of the processes to be attained. Our results suggest that the substrate has little effect on the ordering process and is essentially microwave transparent but rather, it is direct heating of the polar THF molecules that causes microphase separation. It is postulated that the rapid interaction of THF with microwaves and the resultant temperature increase to 55 degrees C within seconds causes an increase of the vapor pressure of the solvent from 19.8 to 70 kPa. This enriched vapor environment increases the plasticity of both PS and PLA chains and leads to the fast self-assembly kinetics. Comparing the patterns formed on silicon, germanium and silicon on insulator (SOI) and also an in situ temperature measurement of silicon in the oven confirms the significance of the solvent over the role of substrate heating during "solvo-microwave" annealing. Besides the short annealing time which has technological importance, the coherence length is on a micron scale and dewetting is not observed after annealing. The etched pattern (PLA was removed by an Ar/O-2 reactive ion etch) was transferred to the underlying silicon substrate fabricating sub-20 nm silicon nanowires over large areas demonstrating that the morphology is consistent both across and through the film.
Resumo:
The chemical composition of surface associated metabolites of two Fucus species (Fucus vesiculosus and Fucus serratus) was analysed by means of gas chromatography-mass spectrometry (GC-MS) to describe temporal patterns in chemical surface composition. Method: The two perennial brown macroalgae F. vesiculosus and F. serratus were sampled monthly at Bülk, outer Kiel Fjord, Germany (54°27'21 N / 10°11'57 E) over an entire year (August 2012 - July 2013). Per month and species six non-fertile Fucus individuals were collected from mixed stands at a depth of 0.5 m under mid water level. For surface extraction approx. 50 g of the upper 5-10 cm apical thalli tips were cut off per species. The surface extraction of Fucus was performed according to the protocol of de Nys and co-workers (1998) with minor modifications (see Rickert et al. 2015). GC/EI-MS measurements were performed with a Waters GCT premier (Waters, Manchester, UK) coupled to an Agilent 6890N GC equipped with a DB-5 ms 30 m column (0.25 mm internal diameter, 0.25 mM film thickness, Agilent, USA). The inlet temperature was maintained at 250°C and samples were injected in split 10 mode. He carrier gas flow was adjusted to 1 ml min-1. Alkanes were used for referencing of retention times. For further details (GC-MS sample preparation and analysis) see the related publication (Rickert et al. submitted to PLOS ONE).
Resumo:
Cheddar cheese was made using control culture (Lactococcus lactis subsp. lactis), or with control culture plus a galactose-metabolising (Gal+) or galactose-non-metabolising (Gal-) Streptococcus thermophilus adjunct; for each culture type, the pH at whey drainage was either low (pH 6.15) or high (pH 6.45). Sc. thermophilus affected the levels of residual lactose and galactose, and the volatile compound profile and sensory properties of the mature cheese (270 d) to an extent dependent on the drain pH and phenotype (Gal+ or Gal-). For all culture systems, reducing drain pH resulted in lower levels of moisture and lactic acid, a higher concentration of free amino acids, and higher firmness. The results indicate that Sc. thermophilus may be used to diversify the sensory properties of Cheddar cheese, for example from a fruity buttery odour and creamy flavour to a more acid taste, rancid odour, and a sweaty cheese flavour at high drain pH.
Resumo:
Two novel strains of Gram-stain-negative, rod-shaped, obligately anaerobic, non-spore-forming, non-motile bacteria were isolated from the faeces of healthy human subjects. The strains, designated as 585-1T and 668, were characterized by mesophilic fermentative metabolism, production of d-lactic acid, succinic acid and acetic acid as end products of d-glucose fermentation, prevalence of C18 : 1 ω9, C18 : 1 ω9 aldehyde, C16 : 0 and C16 : 1 ω7c fatty acids, presence of glycine, glutamic acid, lysine, alanine and aspartic acid in the petidoglycan peptide moiety and lack of respiratory quinones. Whole genome sequencing revealed the DNA G+C content was 56.4–56.6 mol%. The complete 16S rRNA gene sequences of the two strains shared 91.7/91.6 % similarity with Anaerofilum pentosovorans FaeT, 91.3/91.2 % with Gemmiger formicilis ATCC 27749T and 88.9/88.8 % with Faecalibacterium prausnitzii ATCC 27768T. On the basis of chemotaxonomic and genomic properties it was concluded that the strains represent a novel species in a new genus within the family Ruminococcaceae , for which the name Ruthenibacterium lactatiformans gen. nov., sp. nov. is proposed. The type strain of Ruthenibacterium lactatiformans is 585-1T (=DSM 100348T=VKM B-2901T).
Resumo:
Introduction - Milk is considered a complete food from the nutritional point of view. Milk can be exposed to various types of contamination, such as mycotoxins. These metabolites are naturally occurring toxic compounds produced by fungi. Several studies on milk samples have reported the presence of aflatoxin B1 (AFB1) and M1 (AFM1), due to the high incidence in samples intended for human consumption, carcinogenicity proven AFB1 and resistance of the contaminants to the process of digestion, making those available for intestinal absorption. Considering these aspects, the objective of this study was to evaluate the genotoxicity of milk samples contaminated by AFB1 and AFM1 before and after the action of lactic acid bacteria using Caco-2 intestinal human cells.
Resumo:
The current scenario of the Brazilian poultry production is defined by high productivity motivated by exports to markets with elevated levels of sanitary requirement. The work aimed to evaluate the efficacy of chlorinated compounds (chlorine dioxide, dichloro and trichloro) and organic acids (citric, lactic and peracetic acids) in reducing the contamination of poultry by Salmonella spp., mesophiles and enterobacteriaceae. Were isolated 102 strains Salmonella spp. poultry carcass from June to September 2014. Strains were identified by PCR. Was determined the minimum inhibitory concentration (MIC) of antimicrobial compounds for the standard strains of S. Typhimurium, S. Enteritidis and S. Heidelberg. MIC of lactic acid and peracetic acid (20 to 10 g/L) was applied in strains of Salmonella spp. isolated from the slaughter. The MIC of the compounds lactic acid and sodium dichloro was applied in contaminated chiller water with Salmonella (109 CFU/mL) and this was determined Salmonella count in water. Thighs and drumsticks poultry were contaminated with S. Heidelberg (109 UFC/mL) and were applied dichloro (60 mg/L), lactic acid (20 g/L) and sodium hypochlorite (5,0 and 0,5 mg/L) compounds. In the identification by PCR, 93,1% of the strains were identified as Salmonella. For sodium dichloro the MIC was 60 mg/L for 15 minutes to S. Heidelberg and 60 mg/L for 20 minutes for S. Enteritidis. Lactic acid presented MIC of the 5 g/L for 10 minutes to S. Enteritidis 10 g/L for 15 minutes to S. Typhimurium and 20 g/L for 20 minutes to S. Heidelberg. For peracetic acid, MICs were 10 g/L for 10 minutes to S. Typhimurium and S. Heidelberg and 10 g/L for 20 minutes to S. Enteritidis. To citric acid, MICs were 10 g/L for 10 minutes to S. Typhimurium and S. Enteritidis and 25 g/L for 20 minutes to S. Heidelberg. In the isolated Salmonella strains, lactic acid inhibited 97,89% of the strains and peracetic inhibited 100% of the strains. In contaminated chiller water, the compounds reduced the growth of standards strains. When applied to contaminated poultry meat, there was a reduction of Salmonella spp. 1,06 log10 CFU/g relative to the positive control with the use of sodium hypochlorite at 5,0 mg/L, 0,97 log10 CFU/g with dichloro and 0,56 log10 CFU/g with sodium hypochlorite 0,5 mg/L. For mesophiles reduction observed was 0,90 log10 CFU/g relative to the positive control with the use of sodium hypochlorite at 5,0 mg/L, 0,83 log10 CFU/g with dichloro and there isn´t reduction with hypochlorite with sodium 0,5 mg/L. For enterobacteriaceae reduction was 1,0 log10 CFU/g relative to the positive control with the use of sodium hypochlorite at 5,0 mg/L, 0,79 log10 CFU/g with dichloro and 0,22 log10 CFU/g with sodium hypochlorite at 0,5 mg/L. Lactic acid inhibit growth of the microorganisms tested. The data supports the discussions to regulate the use of the technology coadjuvants in the slaughter of poultry.