919 resultados para Inflection points
Resumo:
The North-South Economic Corridor (NSEC), the road between Bangkok and Kunming, China, including the Laos route (R3B) and the Myanmar route (R3B), has been developed since 1998 following the GMS program. The region covering Yunnan Province in China, Shan State in Myanmar, Northern Laos and Northern Thailand has historical and ethnic closeness, and is a comparatively poor mountainous, boundary area. In the wake of the development of the NSEC, however, the region has started to show signs of change. Consequently, a review is to be carried out concerning the movement of people and cars, border trade and the situation concerning the progress of border economic zones at the five nodal border points in the four countries, and over three routes: R3A, R3B, and the Mekong River route.
Resumo:
Let π : FM ! M be the bundle of linear frames of a manifold M. A basis Lijk , j < k, of diffeomorphism invariant Lagrangians on J1 (FM) was determined in [J. Muñoz Masqué, M. E. Rosado, Invariant variational problems on linear frame bundles, J. Phys. A35 (2002) 2013-2036]. The notion of a characteristic hypersurface for an arbitrary first-order PDE system on an ar- bitrary bred manifold π : P → M, is introduced and for the systems dened by the Euler-Lagrange equations of Lijk every hypersurface is shown to be characteristic. The Euler-Lagrange equations of the natural basis of Lagrangian densities Lijk on the bundle of linear frames of a manifold M which are invariant under diffeomorphisms, are shown to be an underdetermined PDEs systems such that every hypersurface of M is characteristic for such equations. This explains why these systems cannot be written in the Cauchy-Kowaleska form, although they are known to be formally integrable by using the tools of geometric theory of partial differential equations, see [J. Muñoz Masqué, M. E. Rosado, Integrability of the eld equations of invariant variational problems on linear frame bundles, J. Geom. Phys. 49 (2004), 119-155]
Resumo:
En este trabajo se da un ejemplo de un conjunto de n puntos situados en posición general, en el que se alcanza el mínimo número de puntos que pueden formar parte de algún k-set para todo k con 1menor que=kmenor quen/2. Se generaliza también, a puntos en posición no general, el resultado de Erdõs et al., 1973, sobre el mínimo número de puntos que pueden formar parte de algún k-set. The study of k- sets is a very relevant topic in the research area of computational geometry. The study of the maximum and minimum number of k-sets in sets of points of the plane in general position, specifically, has been developed at great length in the literature. With respect to the maximum number of k-sets, lower bounds for this maximum have been provided by Erdõs et al., Edelsbrunner and Welzl, and later by Toth. Dey also stated an upper bound for this maximum number of k-sets. With respect to the minimum number of k-set, this has been stated by Erdos el al. and, independently, by Lovasz et al. In this paper the authors give an example of a set of n points in the plane in general position (no three collinear), in which the minimum number of points that can take part in, at least, a k-set is attained for every k with 1 ≤ k < n/2. The authors also extend Erdos’s result about the minimum number of points in general position which can take part in a k-set to a set of n points not necessarily in general position. That is why this work complements the classic works we have mentioned before.
Resumo:
Experimental methods based on single particle tracking (SPT) are being increasingly employed in the physical and biological sciences, where nanoscale objects are visualized with high temporal and spatial resolution. SPT can probe interactions between a particle and its environment but the price to be paid is the absence of ensemble averaging and a consequent lack of statistics. Here we address the benchmark question of how to accurately extract the diffusion constant of one single Brownian trajectory. We analyze a class of estimators based on weighted functionals of the square displacement. For a certain choice of the weight function these functionals provide the true ensemble averaged diffusion coefficient, with a precision that increases with the trajectory resolution.
Resumo:
Two different decelerator elements used to reduce impacts on fruits on ramp transfer points in fruit packing lines were designed and tested. The performance of these elements, a powered decelerator and a multiple curtain, was compared to commercial decelerators (blankets). A ramp of length 60 cm was placed at an angle of 30º in an experimental fruit packing line between a roller transporter and a conveyor. The decelerators were placed on top of the ramp. Different tests were carried out to study the performance of the decelerators using instrumented spheres (IS 100) of various sizes. Results showed that decelerators can reduce the impact intensity down to safe thresholds. The powered decelerator was the most effective because it reduced the speed of fruits and did not cause retention of the fruit, when correctly regulated.
Resumo:
In this work, a new two-dimensional analytic optics design method is presented that enables the coupling of three ray sets with two lens profiles. This method is particularly promising for optical systems designed for wide field of view and with clearly separated optical surfaces. However, this coupling can only be achieved if different ray sets will use different portions of the second lens profile. Based on a very basic example of a single thick lens, the Simultaneous Multiple Surfaces design method in two dimensions (SMS2D) will help to provide a better understanding of the practical implications on the design process by an increased lens thickness and a wider field of view. Fermat?s principle is used to deduce a set of functional differential equations fully describing the entire optical system. The transformation of these functional differential equations into an algebraic linear system of equations allows the successive calculation of the Taylor series coefficients up to an arbitrary order. The evaluation of the solution space reveals the wide range of possible lens configurations covered by this analytic design method. Ray tracing analysis for calculated 20th order Taylor polynomials demonstrate excellent performance and the versatility of this new analytical optics design concept.