925 resultados para In vitro development


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naturally occurring insect viruses are a promising means of intentionally causing disease in insects but they do not compete successfully with synthetic chemicals in the commercial marketplace. Furthermore, their use for pest control is still restricted. One factor preventing the development of baculoviruses as effective biopesticides is concern over the production issue. In vitro instability during propagation of these viruses in suspension cells is the major limitation to the in vitro production ofbaculoviruses in cell cultures. In this study, an isolated baculovirus (HaSNPV) was cultivated using serial passaging in a suspension cell culture. The results show a reduction in the occlusion body production during six passages, due to the passage effect. However the purification of an HaSNPV clone suggested better stability. A simple method used in this work for the serial passaging of this virus is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased expression of the epithelial mucin MUC1 has been linked to tumor aggressiveness in human breast carcinoma. Recent studies have demonstrated that overexpression of MUC1 interferes with cell-substrate and cell-cell adhesion by masking cell surface integrins and E-cadherin. Additionally, the cytoplasmic tail of MUC1 is involved in signal transduction and interactions with catenins. In the present study, we have examined the in vitro expression of MUC1 mRNA and protein in a panel of 14 human breast cancer cell lines using northern blotting, western blotting, immunocytochemistry, and flow cytometry. Considerable variability of expression was noted not only between cell lines but also within several individual lines. Many cell lines such as BT 20, KPL-1, and T47D expressed abundant MUC1 whilst others such as MDA-MB-231 and MCF-7 showed intermediate expression, and MDA-MB-435 and MDA-MB-453 expressed very low levels. Low levels of MUC1 expression were associated with decreased expression of cytokeratin and increased expression of vimentin. Additionally, 12 of the cell lines were established as xenografts in immunocompromised (SCID) mice, and MUC1 expression in both the primary tumors as well as metastases was assessed immunohistochemically. In general, in vivo expression mirrored in vitro expression, although there was reduced in vivo expression in T47D and ZR-75-1 xenografts. Although we showed no correlation between tumorigenicity or metastasis and MUC1 expression, this study will assist development of experimental models to assess the influence of MUC1 of on breast cancer progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to compare the in vitro dissolution profile of a new rapidly absorbed paracetamol tablet containing sodium bicarbonate (PS) with that of a conventional paracetamol tablet (P), and to relate these by deconvolution and mapping to in vivo release. The dissolution methods used include the standard procedure described in the USP monograph for paracetamol tablets, employing buffer at pH5.8 or 0.05 M HCl at stirrer speeds between 10 and 50 rpm. The mapping process was developed and implemented in Microsoft Excel® worksheets that iteratively calculated the optimal values of scale and shape factors which linked in vivo time to in vitro time. The in vitro-in vivo correlation (IVIVC) was carried out simultaneously for both formulations to produce common mapping factors. The USP method, using buffer at pH5.8, demonstrated no difference between the two products. However, using an acidic medium the rate of dissolution of P but not of PS decreased with decreasing stirrer speed. A significant correlation (r=0.773; p<.00001) was established between in vivo release and in vitro dissolution using the profiles obtained with 0.05 M HCl and a stirrer speed of 30 rpm. The scale factor for optimal simultaneous IVIVC in the fasting state was 2.54 and the shape factor was 0.16; corresponding values for mapping in the fed state were 3.37 and 0.13 (implying a larger in vitro-in vivo time difference but reduced shape difference in the fed state). The current IVIVC explains, in part, the observed in vivo variability of the two products. The approach to mapping may also be extended to different batches of these products, to predict the impact of any changes of in vitro dissolution on in vivo release and plasma drug concentration-time profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formulation of solid dispersions is one of the effective methods to increase the rate of solubilization and dissolution of poorly soluble drugs. Solid dispersions of chloramphenicol (CP) and sulphamethoxazole (SX) as model drugs were prepared by melt fusion method using polyethylene glycol 8000 (PEG 8000) as an inert carrier. The dissolution rate of CP and SX were rapid from solid dispersions with low drug and high polymer content. Characterization was performed using fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). FTIR analysis for the solid dispersions of CP and SX showed that there was no interaction between PEG 8000 and the drugs. Hyper-DSC studies revealed that CP and SX were converted into an amorphous form when formulated as solid dispersion in PEG 8000. Mathematical analysis of the release kinetics demonstrated that drug release from the various formulations followed different mechanisms. Permeability studies demonstrated that both CP and SX when formulated as solid dispersions showed enhanced permeability across Caco-2 cells and CP can be classified as well-absorbed compound when formulated as solid dispersions. © 2013 Informa Healthcare USA, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ribozymes are short strands of RNA that possess a huge potential as biological tools for studying gene expression and as therapeutic agents to down-regulate undesirable gene expression. Successful application of ribozymes requires delivery to the target site in sufficient amounts for an adequate duration. However, due to their large size and polyanionic character ribozymes are not amenable to transport across biological membranes. In this study a chemically modified ribozyme with enhanced biological stability, targeted against the EGFR mRNA has been evaluated for cellular delivery to cultured glial and neuronal cells with a view to developing treatments for brain tumours. Cellular delivery of free ribozyme was characterised in cultured glial and neuronal cells from the human and rat. Delivery was very limited and time dependent with no consistent difference observed between glial and neuronal cells in both species. Cellular association was largely temperature and energy-dependent with a small component of non-energy dependent association. Further studies showed that ribozyme cellular association was inhibited with self and cross competition with nucleic and non-nucleic acid polyanions indicating the presence of cell surface ribozyme-binding molecules. Trypsin washing experiments further implied that the ribozyme binding surface molecules were protein by nature. Dependence of cellular association on pH indicated that interaction of ribozyme with cell surface molecules was based on ionic interactions. Fluoresence studies indicated that, post cell association, ribozymes were sequestered in sub-cellular vesicles. South-Western blots identified several cell surface proteins which bind to ribozymes and could facilitate cellular association. The limited cellular association observed with free ribozyme required the development and evaluation of polylactide-co-glycolide microspheres incorporating ribozyme for enhanced cellular delivery. Characterisation of microsphere mediated delivery of ribozyme in cultured glial and neuronal cells showed that association increased by 18 to 27-fold in all cell types with no differences observed between cell lines and species. Microsphere mediated delivery was temperature and energy dependent and independent of pH. In order to assess the potential of PLGA micro spheres for the CNS delivery of ribozyme the distribution of ribozyme entrapping microspheres was investigated in rat CNS after intracerebroventricular injection. Distribution studies demonstrated that after 24 hours there was no free ribozyme present in the brain parenchyma, however microsphere entrapped ribozyme was found in the CNS. Microspheres remained in the ventricular system after deposition and passed from the lateral ventricles to the third and fourth ventricle and in the subarachnoid space. Investigation of the influence of microsphere size on the distribution in CNS demonstrated that particles up to 2.5 and O.5f.lm remained in the ventricles around the choroid plexus and ependymal lining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predictive models of peptide-Major Histocompatibility Complex (MHC) binding affinity are important components of modern computational immunovaccinology. Here, we describe the development and deployment of a reliable peptide-binding prediction method for a previously poorly-characterized human MHC class I allele, HLA-Cw*0102.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 1 cannabinoid receptors (CB1R) have a well established role in modulating GABAergic signalling with the central nervous system, and are thought to be the only type present at GABAergic presynaptic terminals. In the medial entorhinal cortex (mEC), some cortical layers show high levels of ongoing GABAergic signalling (namely layer II) while others show relatively low levels (layer V). Using whole-cell patch clamp techniques, I have, for the first time, demonstrated the presence of functional CB1R in both deep and superficial layers of the mEC. Furthermore, using a range of highly specific ligands for both CB1R and CB2R, I present strong pharmacological evidence for CB2Rs being present in both deep and superficial layers of the mEC in the adult rat brain. In brain slices taken at earlier points in CNS development (P8-12), I have shown that while both CB1R and CB2R specific ligands do modulate GABAergic signalling at early developmental stages, antagonists/ inverse agonists and full agonists have similar effects, and serve only to reduce GABAergic signalling. These data suggest that the full cannabinoid signalling mechanisms at this early stage in synaptogenesis are not yet in place. During these whole-cell studies, I have developed and refined a novel recording technique, using an amantidine derivative (IEM1460) which allows inhibitory postsynaptic currents to be recorded under conditions in which glutamate receptors are not blocked and network activity remains high. Finally I have shown that bath applied CB1 and CB2 receptor antagonists/ inverse agonists are capable of modulating kainic acid induced persistent oscillatory activity in mEC. Inverse agonists suppressed oscillatory activity in the superficial layers of the mEC while it was enhanced in the deeper layers. It seems likely that cannabinoid receptors modulate the inhibitory neuronal activity that underlies network oscillations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have evaluated the cytotoxicity of a series of novel anti-tubercular 2-pyridyl carboxamidrazones through incubation with human mononuclear leucocytes (MNL), with and without a rat microsomal metabolising system. Isoniazid (INH), the closest structurally related agent, was used as a positive control. Incubation of the 3-benzyloxy-benzylidene, dimethylpropyl-benzylidene and 4-phenyl-benzylidene with MNL showed no significant toxicity in comparison with either INH or DMSO vehicle control. However, the 4-N,N-dimethylamino-1-naphthylidene derivative exerted more than sevenfold greater toxicity compared with INH, while the 4-N,N-dimethylamino-1-naphthylidene, 2-benzyloxy-3-methoxy-benzylidene, 2-t-butylthio-benzylidene and 4-i-propyl-benzylidene derivatives showed toxicity which ranged from five to fourfold that of INH. In the presence of either rat microsomes with or without NADPH, the 3-benzyloxy-benzylidene, dimethylpropyl-benzylidene and 4-phenyl-benzylidene derivatives showed no metabolically-mediated cytotoxicity. The latter two derivatives showed a combination of low toxicity and considerable efficacy against Mycobacteria tuberculosis in vitro and show promise for future development. © 2001 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is growing evidence that cholecystokinin (CCK) affects growth and differentiation of anterior pituitary cells, via the CCK-B receptor. The possibility of an autocrine / paracrine role for CCK to modulate hormone secretion in human pituitary tumour cells is demonstrated here by RT-PCR and direct sequencing. In support of this conclusion, a neutralising antibody against the CCK peptide exhibited a dose dependent inhibition of hormone secretion by functionless pituitary adenomas. Total RNA was extracted from human pituitary adenomas, reverse transcribed into cDNA and subjected to PCR using primers specific for the gene for CCK, CCK-A and CCK-B receptors. PCR bands of the predicted length were observed in all tumours using human CCK gene and CCK-B receptor primers. Restriction digestion and direct sequence analysis provided further evidence that they represented both the human CCK peptide along with the CCK-A and/B receptor mRNA. CCK-33 and CCK octapeptide sulphate (CCK-8s) both powerfully stimulated phosphatidylinositol hydrolysis, providing evidence for functional activity of the CCK-A and/B receptors. A direct stimulatory effect of CCK peptides on both LH and FSH secretion is reported for the first time, whereas stimulatory effects on GH were blocked by antagonists to CCK. These results may indicate an autocrine role for CCK in the functioning and perhaps development of human pituitary tumours. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Areas covered: The review discusses the main challenges of ODT manufacturing process and the emerging solutions featured at early drug development stages. The research specifically describes the methods reported for taste masking/assessment and solubilisation of unpalatable and poorly soluble drugs, respectively. Furthermore, this review highlights the techniques used for developing modified-release ODTs, an emerging area in the field. In addition, it also discusses the poor flowability and segregation problems of directly compressed powders. Moreover, the review describes the tests reported in the literature for ODT disintegration time assessment since a universal technique is still non-existent. Expert opinion: The approaches used to overcome the manufacturing challenges often have a bearing on the price of the end product. However, despite the technical and regulatory challenges, ODTs can offer many advantages over the conventional dosage forms if accompanied by suitable adjuvant technologies and in vitro analytical tools. © 2014 Informa UK, Ltd. Introduction: Orally disintegrating tablets (ODTs) provide several advantages over conventional tablets such as suitability for patients with swallowing difficulties and faster onset of action. The manufacture of ODTs by compression/tableting offers a practical and cost-effective strategy over the freeze drying (lyophilisation) method. Nonetheless, the FDA recommends a disintegration time of 30 s and a maximum weight of 500 mg for a tablet to be labelled as an ODT. These requirements, alongside other desirable product properties, have created a number of challenges for the formulator to overcome while developing compressed ODTs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have suggested that incorporating relatively small quantities of titanium dioxide into bioactive glasses may result in an increase in bioactivity and hydroxyapatite formation. The present work therefore investigated the in vitro bioactivity of a titanium doped bioglass and compared the results with 45S5 bioglass. Apatite formation was evaluated for bioglass and Ti-bioglass in the presence and absence of foetal calf serum. Scanning electron microscopy (SEM) images were used to evaluate the surface development and energy dispersive X-ray measurements provided information on the elemental ratios. X-ray diffraction spectra confirmed the presence of apatite formation. Cell viability was assessed for bone marrow stromal cells under direct and indirect contact conditions and cell adhesion was assessed using SEM. © 2014 Springer Science+Business Media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To assess the effects of human intervertebral disc aggrecan on nerve growth and guidance, using in vitro techniques. METHODS: Aggrecan extracted from human lumbar intervertebral discs was incorporated into tissue culture substrata for the culture of the human neuronal cell line, SH-SY5Y, or explants of chick dorsal root ganglia. The effects on nerve growth of different concentrations of aggrecan extracted from the anulus fibrosus and nucleus pulposus, and of these aggrecan preparations following enzymic deglycosylation, were compared. RESULTS: Disc aggrecan inhibited the growth of neurites from SH-SY5Y cells and induced growth cone turning of chick sensory neurites in a concentration-dependent manner. Aggrecan isolated from the anulus fibrosus was more inhibitory than that isolated from the nucleus pulposus, but enzymic pretreatments to reduce the glycosylation of both types of disc aggrecan partially abrogated their inhibitory effects. CONCLUSION: Nerve growth into degenerate intervertebral discs has been linked with the development of low back pain, but little is known about factors affecting disc innervation. The finding that disc aggrecan inhibits nerve growth in vitro, and that this inhibitory activity depends on aggrecan glycosylation, has important implications for our understanding of mechanisms that may regulate disc innervation in health and disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: A natural glycoprotein usually exists as a spectrum of glycosylated forms, where each protein molecule may be associated with an array of oligosaccharide structures. The overall range of glycoforms can have a variety of different biophysical and biochemical properties, although details of structure–function relationships are poorly understood, because of the microheterogeneity of biological samples. Hence, there is clearly a need for synthetic methods that give access to natural and unnatural homogeneously glycosylated proteins. The synthesis of novel glycoproteins through the selective reaction of glycosyl iodoacetamides with the thiol groups of cysteine residues, placed by site-directed mutagenesis at desired glycosylation sites has been developed. This provides a general method for the synthesis of homogeneously glycosylated proteins that carry saccharide side chains at natural or unnatural glycosylation sites. Here, we have shown that the approach can be applied to the glycoprotein hormone erythropoietin, an important therapeutic glycoprotein with three sites of N-glycosylation that are essential for in vivo biological activity. Results: Wild-type recombinant erythropoietin and three mutants in which glycosylation site asparagine residues had been changed to cysteines (His10-WThEPO, His10-Asn24Cys, His10-Asn38Cys, His10-Asn83CyshEPO) were overexpressed and purified in yields of 13 mg l−1 from Escherichia coli. Chemical glycosylation with glycosyl-β-N-iodoacetamides could be monitored by electrospray MS. Both in the wild-type and in the mutant proteins, the potential side reaction of the other four cysteine residues (all involved in disulfide bonds) were not observed. Yield of glycosylation was generally about 50% and purification of glycosylated protein from non-glycosylated protein was readily carried out using lectin affinity chromatography. Dynamic light scattering analysis of the purified glycoproteins suggested that the glycoforms produced were monomeric and folded identically to the wild-type protein. Conclusions: Erythropoietin expressed in E. coli bearing specific Asn→Cys mutations at natural glycosylation sites can be glycosylated using β-N-glycosyl iodoacetamides even in the presence of two disulfide bonds. The findings provide the basis for further elaboration of the glycan structures and development of this general methodology for the synthesis of semi-synthetic glycoproteins. Results: Wild-type recombinant erythropoietin and three mutants in which glycosylation site asparagine residues had been changed to cysteines (His10-WThEPO, His10-Asn24Cys, His10-Asn38Cys, His10-Asn83CyshEPO) were overexpressed and purified in yields of 13 mg l−1 from Escherichia coli. Chemical glycosylation with glycosyl-β-N-iodoacetamides could be monitored by electrospray MS. Both in the wild-type and in the mutant proteins, the potential side reaction of the other four cysteine residues (all involved in disulfide bonds) were not observed. Yield of glycosylation was generally about 50% and purification of glycosylated protein from non-glycosylated protein was readily carried out using lectin affinity chromatography. Dynamic light scattering analysis of the purified glycoproteins suggested that the glycoforms produced were monomeric and folded identically to the wild-type protein. Conclusions: Erythropoietin expressed in E. coli bearing specific Asn→Cys mutations at natural glycosylation sites can be glycosylated using β-N-glycosyl iodoacetamides even in the presence of two disulfide bonds. The findings provide the basis for further elaboration of the glycan structures and development of this general methodology for the synthesis of semi-synthetic glycoproteins

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems. © 2010 Elsevier Inc.