968 resultados para Image promotion
Resumo:
Laser diffraction (LD) and static image analysis (SIA) of rectangular particles [United States Pharmacopeia, USP30-NF25, General Chapter <776>, Optical Miroscopy.] have been systematically studied. To rule out sample dispersion and particle orientation as the root cause of differences in size distribution profiles, we immobilize powder samples on a glass plate by means of a dry disperser. For a defined region of the glass plate, we measure the diffraction pattern as induced by the dispersed particles, and the 2D dimensions of the individual particles using LD and optical microscopy, respectively. We demonstrate a correlation between LD and SIA, with the scattering intensity of the individual particles as the dominant factor. In theory, the scattering intensity is related to the square of the projected area of both spherical and rectangular particles. In traditional LD the size distribution profile is dominated by the maximum projected area of the particles (A). The diffraction diameters of a rectangular particle with length L and breadth B as measured by the LD instrument approximately correspond to spheres of diameter ØL and ØB respectively. Differences in the scattering intensity between spherical and rectangular particles suggest that the contribution made to the overall LD volume probability distribution by each rectangular particle is proportional to A2/L and A2/B. Accordingly, for rectangular particles the scattering intensity weighted diffraction diameter (SIWDD) explains an overestimation of their shortest dimension and an underestimation of their longest dimension. This study analyzes various samples of particles whose length ranges from approximately 10 to 1000 μm. The correlation we demonstrate between LD and SIA can be used to improve validation of LD methods based on SIA data for a variety of pharmaceutical powders all with a different rectangular particle size and shape.
Resumo:
Le nombre d'examens tomodensitométriques (Computed Tomography, CT) effectués chaque année étant en constante augmentation, différentes techniques d'optimisation, dont les algorithmes de reconstruction itérative permettant de réduire le bruit tout en maintenant la résolution spatiale, ont étés développées afin de réduire les doses délivrées. Le but de cette étude était d'évaluer l'impact des algorithmes de reconstruction itérative sur la qualité image à des doses effectives inférieures à 0.3 mSv, comparables à celle d'une radiographie thoracique. Vingt CT thoraciques effectués à cette dose effective ont été reconstruits en variant trois paramètres: l'algorithme de reconstruction, rétroprojection filtrée versus reconstruction itérative iDose4; la matrice, 5122 versus 7682; et le filtre de résolution en densité (mou) versus spatiale (dur). Ainsi, 8 séries ont été reconstruites pour chacun des 20 CT thoraciques. La qualité d'image de ces 8 séries a d'abord été évaluée qualitativement par deux radiologues expérimentés en aveugle en se basant sur la netteté des parois bronchiques et de l'interface entre le parenchyme pulmonaire et les vaisseaux, puis quantitativement en utilisant une formule de merit, fréquemment utilisée dans le développement de nouveaux algorithmes et filtres de reconstruction. La performance diagnostique de la meilleure série acquise à une dose effective inférieure à 0.3 mSv a été comparée à celle d'un CT de référence effectué à doses standards en relevant les anomalies du parenchyme pulmonaire. Les résultats montrent que la meilleure qualité d'image, tant qualitativement que quantitativement a été obtenue en utilisant iDose4, la matrice 5122 et le filtre mou, avec une concordance parfaite entre les classements quantitatif et qualitatif des 8 séries. D'autre part, la détection des nodules pulmonaires de plus de 4mm étaient similaire sur la meilleure série acquise à une dose effective inférieure à 0.3 mSv et le CT de référence. En conclusion, les CT thoraciques effectués à une dose effective inférieure à 0.3 mSv reconstruits avec iDose4, la matrice 5122 et le filtre mou peuvent être utilisés avec confiance pour diagnostiquer les nodules pulmonaires de plus de 4mm.
Resumo:
As malformações cardíacas são as mais freqüentes anomalias congênitas ao nascimento, entretanto, a sua detecção pré-natal pela ultra-sonografia convencional permanece baixa. As ultra-sonografias de terceira e quarta dimensões surgiram no início da década de 90, apresentando grandes aplicações em obstetrícia, principalmente nos casos de diagnósticos duvidosos à ultra-sonografia bidimensional. O spatio-temporal image correlation (STIC) representa grande avanço na área de ultra-som de quarta dimensão; constitui-se em um software acoplado ao aparelho Voluson 730 Expert, que permite a aquisição volumétrica do coração fetal e suas conexões vasculares. As análises volumétricas são realizadas nos modos multiplanar e de renderização, podendo-se também utilizar o Doppler. Apresenta, como grandes vantagens, a aquisição rápida e a possibilidade de análise posterior por especialistas em ecocardiografia fetal. Pode ser aplicada para a pesquisa de quaisquer cardiopatias congênitas, pois permite a aquisição de qualquer plano, diferentemente do ultra-som bidimensional. Sua principal desvantagem está relacionada aos movimentos fetais. A maior difusão do método pode permitir um aumento na detecção de malformações cardíacas, pois possibilita ao ultra-sonografista geral encaminhar, via Internet, os volumes para a análise por especialistas em ecocardiografia fetal.
Resumo:
The aim of this article was to study the effect of virtual-reality exposure to situations that are emotionally significant for patients with eating disorders (ED) on the stability of body-image distortion and body-image dissatisfaction. A total of 85 ED patients and 108 non-ED students were randomly exposed to four experimental virtual environments: a kitchen with low-calorie food, a kitchen with high-calorie food, a restaurant with low-calorie food, and a restaurant with high-calorie food. In the interval between the presentation of each situation, body-image distortion and body-image dissatisfaction were assessed. Several 2 x 2 x 2 repeated measures analyses of variance (high-calorie vs. low-calorie food x presence vs. absence of people x ED group vs. control group) showed that ED participants had significantly higher levels of body-image distortion and body dissatisfaction after eating high-calorie food than after eating low-calorie food, while control participants reported a similar body image in all situations. The results suggest that body-image distortion and body-image dissatisfaction show both trait and state features. On the one hand, ED patients show a general predisposition to overestimate their body size and to feel more dissatisfied with their body image than controls. On the other hand, these body-image disturbances fluctuate when participants are exposed to virtual situations that are emotionally relevant for them.
Resumo:
Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment.
Resumo:
Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality at CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.