960 resultados para Image Segmentation
Resumo:
The shape of the energy spectrum produced by an x-ray tube has a great importance in mammography. Many anode-filtration combinations have been proposed to obtain the most effective spectrum shape for the image quality-dose relationship. On the other hand, third generation synchrotrons such as the European Synchrotron Radiation Facility in Grenoble are able to produce a high flux of monoenergetic radiation. It is thus a powerful tool to study the effect of beam energy on image quality and dose in mammography. An objective method was used to evaluate image quality and dose in mammography with synchrotron radiation and to compare them to standard conventional units. It was performed systematically in the energy range of interest for mammography through the evaluation of a global image quality index and through the measurement of the mean glandular dose. Compared to conventional mammography units, synchrotron radiation shows a great improvement of the image quality-dose relationship, which is due to the beam monochromaticity and to the high intrinsic collimation of the beam, which allows the use of a slit instead of an anti-scatter grid for scatter rejection.
Resumo:
A methodology of exploratory data analysis investigating the phenomenon of orographic precipitation enhancement is proposed. The precipitation observations obtained from three Swiss Doppler weather radars are analysed for the major precipitation event of August 2005 in the Alps. Image processing techniques are used to detect significant precipitation cells/pixels from radar images while filtering out spurious effects due to ground clutter. The contribution of topography to precipitation patterns is described by an extensive set of topographical descriptors computed from the digital elevation model at multiple spatial scales. Additionally, the motion vector field is derived from subsequent radar images and integrated into a set of topographic features to highlight the slopes exposed to main flows. Following the exploratory data analysis with a recent algorithm of spectral clustering, it is shown that orographic precipitation cells are generated under specific flow and topographic conditions. Repeatability of precipitation patterns in particular spatial locations is found to be linked to specific local terrain shapes, e.g. at the top of hills and on the upwind side of the mountains. This methodology and our empirical findings for the Alpine region provide a basis for building computational data-driven models of orographic enhancement and triggering of precipitation. Copyright (C) 2011 Royal Meteorological Society .
Resumo:
Among various advantages, their small size makes model organisms preferred subjects of investigation. Yet, even in model systems detailed analysis of numerous developmental processes at cellular level is severely hampered by their scale. For instance, secondary growth of Arabidopsis hypocotyls creates a radial pattern of highly specialized tissues that comprises several thousand cells starting from a few dozen. This dynamic process is difficult to follow because of its scale and because it can only be investigated invasively, precluding comprehensive understanding of the cell proliferation, differentiation, and patterning events involved. To overcome such limitation, we established an automated quantitative histology approach. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with automated cell type recognition through machine learning, we could establish a cellular resolution atlas that reveals vascular morphodynamics during secondary growth, for example equidistant phloem pole formation. DOI: http://dx.doi.org/10.7554/eLife.01567.001.
Resumo:
A study of how the machine learning technique, known as gentleboost, could improve different digital watermarking methods such as LSB, DWT, DCT2 and Histogram shifting.
Resumo:
BACKGROUND: Atrial fibrillation (AF) is largely regarded to be initiated from left atrial (LA) dilatation, with subsequent dilatation of the right atrium (RA) in those who progress to chronic AF. We hypothesized that in adult patients with right-sided congenital heart disease (CHD) and AF, RA dilatation will predominate with subsequent dilatation of the left atrium, as a mirror image. METHODS: Adult patients with diagnosis of right-sided, ASD or left-sided CHD who had undergone an echocardiographic study and electrocardiographic recording in 2007 were included. RA and LA area were measured from the apical view. AF was diagnosed from a 12-lead electrocardiogram or Holter recording. A multivariate logistic regression model was used to identify predictors of AF and linear regression models were performed to measure relationship between RA and LA area and AF. RESULTS: A total of 291 patients were included in the study. Multivariate analysis showed that age (p=0.0001), RA (p=0.025) and LA area (p=0.0016) were significantly related to AF. In patients with pure left-sided pathologies, there was progressive and predominant LA dilatation that paralleled the development of AF from none to paroxysmal to chronic AF. In patients with pure right-sided pathologies, there was a mirror image of progressive and predominant RA dilatation with the development of AF. CONCLUSION: We observed a mirror image atrial dilatation in patients with right sided disease and AF. This may provide novel mechanistic insight as to the origin of AF in these patients and deserves further studying in the form of targeted electrophysiological studies.
Resumo:
We propose a segmentation method based on the geometric representation of images as 2-D manifolds embedded in a higher dimensional space. The segmentation is formulated as a minimization problem, where the contours are described by a level set function and the objective functional corresponds to the surface of the image manifold. In this geometric framework, both data-fidelity and regularity terms of the segmentation are represented by a single functional that intrinsically aligns the gradients of the level set function with the gradients of the image and results in a segmentation criterion that exploits the directional information of image gradients to overcome image inhomogeneities and fragmented contours. The proposed formulation combines this robust alignment of gradients with attractive properties of previous methods developed in the same geometric framework: 1) the natural coupling of image channels proposed for anisotropic diffusion and 2) the ability of subjective surfaces to detect weak edges and close fragmented boundaries. The potential of such a geometric approach lies in the general definition of Riemannian manifolds, which naturally generalizes existing segmentation methods (the geodesic active contours, the active contours without edges, and the robust edge integrator) to higher dimensional spaces, non-flat images, and feature spaces. Our experiments show that the proposed technique improves the segmentation of multi-channel images, images subject to inhomogeneities, and images characterized by geometric structures like ridges or valleys.
Resumo:
Mosaics have been commonly used as visual maps for undersea exploration and navigation. The position and orientation of an underwater vehicle can be calculated by integrating the apparent motion of the images which form the mosaic. A feature-based mosaicking method is proposed in this paper. The creation of the mosaic is accomplished in four stages: feature selection and matching, detection of points describing the dominant motion, homography computation and mosaic construction. In this work we demonstrate that the use of color and textures as discriminative properties of the image can improve, to a large extent, the accuracy of the constructed mosaic. The system is able to provide 3D metric information concerning the vehicle motion using the knowledge of the intrinsic parameters of the camera while integrating the measurements of an ultrasonic sensor. The experimental results of real images have been tested on the GARBI underwater vehicle
Resumo:
Abstract :This article examines the interplay of text and image in The Fairy Tales of Charles Perrault (1977), translated by Angela Carter and illustrated by Martin Ware, as a form of intersemiotic dialogue that sheds new light on Carter's work. It argues that Ware's highly original artwork based on the translation not only calls into question the association of fairy tales with children's literature (which still characterizes Carter's translation), but also captures an essential if heretofore neglected aspect of Carter's creative process, namely the dynamics between translating, illustrating and rewriting classic tales. Several elements from Ware's illustrations are indeed taken up and elaborated on in The Bloody Chamber and Other Stories (1979), the collection of "stories about fairy stories" that made Carter famous. These include visual details and strategies that she transposed to the realm of writing, giving rise to reflections on the relation between visuality and textuality.RésuméCet article considère l'interaction du texte et de l'image dans les contes de Perrault traduits par Angela Carter et illustrés par Martin Ware (The Fairy Tales of Charles Perrault, 1977) comme une forme de dialogue intersémiotique particulièrement productif. Il démontre que les illustrations originales de Ware ne mettent pas seulement en question l'assimilation des contes à la littérature de jeunesse (qui est encore la perspective adoptée par la traductrice dans ce livre), mais permettent aussi de saisir un aspect essentiel bien que jusque là ignoré du procession de création dans l'oeuvre de Carter, à savoir la dynamique qui lie la traduction, l'illustration et la réécriture des contes classiques. Plusieurs éléments des illustrations de Ware sont ainsi repris et élaborés dans The Bloody Chamber and Other Stories (1979), la collection de "stories about fairy stories" qui rendit Carter célèbre. La transposition de détails et de stratégies visuelles dans l'écriture donnent ainsi l'occasion de réflexions sur les rapports entre la visualité et la textualité.
The role of energetic value in dynamic brain response adaptation during repeated food image viewing.
Resumo:
The repeated presentation of simple objects as well as biologically salient objects can cause the adaptation of behavioral and neural responses during the visual categorization of these objects. Mechanisms of response adaptation during repeated food viewing are of particular interest for better understanding food intake beyond energetic needs. Here, we measured visual evoked potentials (VEPs) and conducted neural source estimations to initial and repeated presentations of high-energy and low-energy foods as well as non-food images. The results of our study show that the behavioral and neural responses to food and food-related objects are not uniformly affected by repetition. While the repetition of images displaying low-energy foods and non-food modulated VEPs as well as their underlying neural sources and increased behavioral categorization accuracy, the responses to high-energy images remained largely invariant between initial and repeated encounters. Brain mechanisms when viewing images of high-energy foods thus appear less susceptible to repetition effects than responses to low-energy and non-food images. This finding is likely related to the superior reward value of high-energy foods and might be one reason why in particular high-energetic foods are indulged although potentially leading to detrimental health consequences.