913 resultados para ION ENERGY-DISTRIBUTION
Resumo:
This work reports on the preparation of Gd2O3, cubic system, with spherical particles, narrow size distribution, whether or not doped with 1-5 at.% of Eu3+ and the influence of Eu3+ concentration on optical and morphological properties. Average diameter and size distribution particle analyses were performed for all samples from SEM results. Doped samples were also investigated by luminescence spectroscopy and emission kinetic measurements. All oxide samples present a particle average diameter distribution range from 110 to 150 nm and a decrease of particle average diameter with the presence of Eu3+. The particle size decrease is almost the same for all samples with different doping ion concentration. Therefore, the presence of doping ion may be inhibiting particle growth after the nucleation process. From spectroscopic studies, the doping ion distribution in the surface of oxide samples can be considered homogeneous because concentration quenching is not observed, as well as a significant difference among the calculated lifetime for each sample. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The problems of wave propagation and power flow in the distribution network composed of an overhead wire parallel to the surface of the ground have not been satisfactorily solved. While a complete solution of the actual problem is impossible, as it is explained in the famous Carson's paper (1926), the solution of the problem, where the actual earth is replaced by a plane homogenous semi-infinite solid, is of considerable interest. In this paper, a power flow algorithm in distribution networks with earth return, based on backward-forward technique, is discussed. In this novel use of the technique, the ground is explicitly represented. In addition, an iterative method for determining impedance for modelling ground effect in the extended power flow algorithm is suggested. Results obtained from single-wire and three-wire studies using IEEE test networks are presented and discussed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Visible frequency upconversion emission through resonant energy-transfer involving neodymium and praseodymium ions in PbGeO3-PbF2-CdF2 glass excited by a semiconductor laser at 8 10 nm is investigated. Luminescence emission centered around 485, 530, 610, and 645 nm, which correspond to the P-3(0) -> H-3(4), P-3(1) + I-1(6) -> H-3(5), P-3(0) -> H-3(6) and P-1(0) -> F-3(2) transitions of praseodymium ions, respectively, are observed. The upconversion excitation of the Pr3+ ions excited-state emitting levels was accomplished by means of an ion-pair interaction involving ground-state absorption, multiphonon relaxation, and excited-state absorption of pump photons at 8 10 nm by the Nd3+ (I-4(9/2) -> H-2(9/2), F-4(5/2); F-4(3/2) -> P-2(1/2)) and direct energy-transfer to Pr3+ ((4)G(11/2) + K-2(11/2), H-3(4) -> I-4(9/2), P-3(1) + I-1(6)). The dependence of the upconversion emission intensity upon the excitation power, and neodymium concentration are also examined. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The DO experiment at Fermilab's Tevatron will record several petabytes of data over the next five years in pursuing the goals of understanding nature and searching for the origin of mass. Computing resources required to analyze these data far exceed capabilities of any one institution. Moreover, the widely scattered geographical distribution of DO collaborators poses further serious difficulties for optimal use of human and computing resources. These difficulties will exacerbate in future high energy physics experiments, like the LHC. The computing grid has long been recognized as a solution to these problems. This technology is being made a more immediate reality to end users in DO by developing a grid in the DO Southern Analysis Region (DOSAR), DOSAR-Grid, using a available resources within it and a home-grown local task manager, McFarm. We will present the architecture in which the DOSAR-Grid is implemented, the use of technology and the functionality of the grid, and the experience from operating the grid in simulation, reprocessing and data analyses for a currently running HEP experiment.
Resumo:
A bag at temperature (T) with pressure B(T) = B(0)[1 - (T/T(c))4] is shown to be consistent with recent lattice data on the pi and the rho mesons. The limiting temperature, T(l), of the pion bag from the Bekenstein entropy bound is lower than that of other mesons. This agrees with the thermal distribution of pi, K and the rho in heavy ion collisions, which (unlike proton-nucleus or pp data) show a marked difference in T of pion and other mesons in the mid-rapidity region.
Resumo:
We have used the adiabatic hyperspherical approach to determine the energies and wave functions of the ground state and first excited states of a two-dimensional D- ion in the presence of a magnetic field. Using a modified hyperspherical angular variable, potential energy curves are analytically obtained, allowing an accurate determination of the energy levels of this system. Upper and lower bounds for the ground-state energy have been determined by a non-adiabatic procedure, as the purpose is to improve the accuracy of method. The results are shown to be comparable to the best variational calculations reported in the literature.
Resumo:
Glassy polymeric carbon (GPC) is a useful material for medical applications due to its chemical inertness and biocompatible characteristics. Mitral and aortic and hydrocephalic valves are examples of GPC prosthetic devices that have been fabricated and commercialized in Brazil. In this work, ion beam was used to improve the mechanical characteristics of GPC surface and therefore to avoid the propagation of microcracks where the cardiac valves are more fragile. A control group of phenolic resin samples heat-treated at 300, 400, 700, 1000, 1500, and 2500 degrees C was characterized by measuring their hardness and Young's reduced elastic modulus with the depth of indentation. The control group was compared to results obtained with samples heat-treated at 700, 1000, and 1500 degrees C and bombarded with energetic ions of silicon, carbon, oxygen, and gold at energies of 5, 6, 8, and 10 MeV, respectively, with fluences between 10x10(13) and 10x10(16) ions/cm(2). GPC nonbombarded samples showed that hardness depends on the heat treatment temperature (HTT), with a maximum hardness for heat treatment at 1000 degrees C. The comparison between the control group and bombarded group also showed that hardness, after bombardment, had a greater increase for samples prepared at 700 degrees C than for samples prepared at higher temperatures. The Young's elastic modulus presents an exponential relationship with depth. The parameters obtained by fitting depend on the HTT and on the ion used in the bombardment more than on energy and fluence. The hardness results show clearly that bombardment can promote carbonization, increase the linkage between the chains of the polymeric material, and promote recombination of broken bonds in lateral groups that are more numerous for samples heat-treated at 700 degrees C. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Crotamine is a strong basic polypeptide from Crotalus durissus terrificus (Cdt) venom composed of 42 amino acid residues tightly bound by three disulfide bonds. It causes skeletal muscle spasms leading to spastic paralysis of hind limbs in mice. The objective of this paper was to study the distribution of crotamine injected intraperitoneally (ip) in mice. Crotamine was purified from Cdt venom by gel filtration, followed by ion exchange chromatography, using a fast-performance liquid chromatography (FPLC) system. Purified crotamine was irradiated at 2 kGy in order to detoxify. Both native and irradiated proteins were labeled with 125, using chloramine T method, and separated by get filtration. Male Swiss mice were injected ip with 0.1 mL (2 x 10(6) cpm/mouse) of I-125 native or irradiated crotamine. At various time intervals, the animals were killed by ether inhalation and blood, spleen, liver, kidneys, brain, lungs, heart, and skeletal muscle were collected in order to determine the radioactivity content. The highest levels of radioactivity were found in the kidneys and the liver, and the lowest in the brain. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The K+ reversible processes for ion exchange in KhFek[Fe(CN)(6)](l)center dot mH(2)O host compounds (Prussian Blue) were thermodynamically analyzed. A thermodynamic approach was established and developed based on the consideration of a lattice-gas model where the electronic contribution to the chemical potential is neglected and the ion-host interaction is not considered. The occupation fraction of the intercalation process was calculated from the kinetic parameters obtained through ac-electrogravimetry in a previous paper. In this way, the mass potential transfer function introduces a new way to evaluate the thermodynamic aspect of intercalation. Finally, based on the thermodynamic approach, the energy used to put each K+ ion into the host material was calculated. The values were shown to be in good agreement with the values obtained through transient techniques, for example, cyclic voltammetry. As a result, this agreement between theory and experimental data validates the thermodynamic approach considered here, and for the first time, the thermodynamic aspects of insertion were considered for mixed valence materials.
Resumo:
Electrical properties of natural alexandrite (BeAl2O4:Cr3+) are investigated by the thermally stimulated depolarization current (TSDC) technique. Samples are submitted to consecutive annealing processes and TSDC is carried out after each annealing, yielding bands with different parameters. These bands are fitted by a continuous distribution of relaxation parameters: activation energy and pre-exponential factor of the Arrhenius equation. It has been observed that annealing influences the dipole relaxation behavior, since it promotes a modification of Fe3+ and C3+ impurity distributions on sites of distinct symmetry: Al-1 and Al-2. In order to have a reference for comparison, TSDC is also carried out on a synthetic alexandrite sample, where the only impurity present is Cr3+ ion.
Resumo:
The effects of ion irradiation on fluorinated plasma polymer films are investigated using profilometry, surface contact-angle measurements, infrared reflection absorption spectroscopy (IRRAS) and X-ray photoelectron spectroscopy (XPS). Remarkably, helium plasma immersion ion implantation (PIII) of several amorphous hydrogenated fluorinated plasma polymers deposited from C(2)H(2)-SF(6), C(6)H(6)-SF(6) or C(6)F(6) produces film compactions of up to 40%, and modifies the surface energy in the 35 to 65 dyn cm(-1) range. As revealed by IRRAS and XPS, the films contain C-H, C-C, C=C, C=O, O-H and C-F groups. XPS spectra confirm the presence of N (typically similar to 5%). The films produced from SF(6)-containing plasmas also contain S. For irradiation times of 80 min, the film carbon content is increased, and the fluorine content is greatly reduced, by factors of about 3 to 15, depending on the initial film composition. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)