922 resultados para High-level Design Specification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) differ from conventional distributed systems in many aspects. The resource limitation of sensor nodes, the ad-hoc communication and topology of the network, coupled with an unpredictable deployment environment are difficult non-functional constraints that must be carefully taken into account when developing software systems for a WSN. Thus, more research needs to be done on designing, implementing and maintaining software for WSNs. This thesis aims to contribute to research being done in this area by presenting an approach to WSN application development that will improve the reusability, flexibility, and maintainability of the software. Firstly, we present a programming model and software architecture aimed at describing WSN applications, independently of the underlying operating system and hardware. The proposed architecture is described and realized using the Model-Driven Architecture (MDA) standard in order to achieve satisfactory levels of encapsulation and abstraction when programming sensor nodes. Besides, we study different non-functional constrains of WSN application and propose two approaches to optimize the application to satisfy these constrains. A real prototype framework was built to demonstrate the developed solutions in the thesis. The framework implemented the programming model and the multi-layered software architecture as components. A graphical interface, code generation components and supporting tools were also included to help developers design, implement, optimize, and test the WSN software. Finally, we evaluate and critically assess the proposed concepts. Two case studies are provided to support the evaluation. The first case study, a framework evaluation, is designed to assess the ease at which novice and intermediate users can develop correct and power efficient WSN applications, the portability level achieved by developing applications at a high-level of abstraction, and the estimated overhead due to usage of the framework in terms of the footprint and executable code size of the application. In the second case study, we discuss the design, implementation and optimization of a real-world application named TempSense, where a sensor network is used to monitor the temperature within an area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elastic Octopus was inspired by a perceived increased reluctance in student attitudes towards taking risks and failure in design innovation. In particular, recent trends in funding and risk-aversion in earlier phases of education where failures are discouraged has limited the potential for ground breaking innovative thinking. This experimental design project was conceived to tackle the failure reluctance trend by developing a team based cross-disciplinary masters level design innovation studio module where students would succeed in relation to their capacity to demonstrate failure. Principally this involved creating a permission giving process where ambitious design experiments are developed in order to encourage the transgression of edges and boundaries. This was achieved by adapting a number of creative design methods including blue-sky thinking, back casting and design exorcisms to challenge and de-programme failure aversion. Succeeding through failure involved transitioning from meta-themes through to experimental contexts where failures could be attempted as a way of exploring the limits of technologies, structures, mental models, human engagement and other factors critical to success. We hope that insights gained from this disruptive educational module can offer unexpected benefits for students ranging from increased failure resilience, through to narrative generation and context forming skills while at the same time providing wider value in discussing how designers deal with failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the need of the companies in becoming more competitive within the market, it arises an incessant search for selective human potential, with a high level of capacity and low rotativity, which motivation results in production raise, quality optimization and waste reduction. This scenario requires a strategy development which advantages the Human Resources Quality Management. This way, the model of the Human System Audit (HSA), developed by the Spanish researchers Ouijano and Navarro, presents itself as an important tool to diagnosis and evaluation, contemplating the environment where the organization is inserted, its strategies, its organizational design, its processes and its organizational effectiveness. In this sense, the present study has identified the existent relation between the professional satisfaction and the Organizational Culture, based in the model HSA. The research has been a quantitative-descriptive one and has had as population the technical-administrative workers from the Federal Center of Technical Education of Rio Grande do Norte (CEFET RN). The data collection has occurred during May, 2008, by means of the application of a questionnaire in the HSA model. The sample was composed by 167 subjects, distributed among the Five units of the institution. It was used the factorial analysis, with the extraction method of main components and orthogonal rotation varimax, in order to extract the dimensions of the satisfaction and of the organizational culture and the calculation of Cronbach s Alpha coefficient, to evaluate the reliability of these dimensions. The factorial analysis of the satisfaction indicators has identified four factors,, all of them showing significance: gratefulness and relationship , self-realization , stability and security and physical conditions and social benefits . The result of the factorial analysis with the indicators of the organizational culture has extracted four factors and among them, three of them have obtained significance: Personal Satisfaction Style , Competitive-Denial-Power Style and the Conventional-Dependent Style . After identifying the dimensions of the satisfaction and culture found at CEFET-RN, it has been notice the existence or not of relation among them, through the application of Pearson s coefficient. It has been verified that all of the dimensions of the Professional satisfaction are correlated with some dimension of the organizational culture, having in outstand position, with higher intensity, the relation between the culture style of Personal Satisfaction and the satisfaction factor referring to the self-realization

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ARAUJO, Márcio V. ; ALSINA, Pablo J. ; MEDEIROS, Adelardo A. D. ; PEREIRA, Jonathan P.P. ; DOMINGOS, Elber C. ; ARAÚJO, Fábio M.U. ; SILVA, Jáder S. . Development of an Active Orthosis Prototype for Lower Limbs. In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 20., 2009, Gramado, RS. Proceedings… Gramado, RS: [s. n.], 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the world of professional sports shifting towards employing better sport analytics, the demand for vision-based performance analysis is growing increasingly in recent years. In addition, the nature of many sports does not allow the use of any kind of sensors or other wearable markers attached to players for monitoring their performances during competitions. This provides a potential application of systematic observations such as tracking information of the players to help coaches to develop their visual skills and perceptual awareness needed to make decisions about team strategy or training plans. My PhD project is part of a bigger ongoing project between sport scientists and computer scientists involving also industry partners and sports organisations. The overall idea is to investigate the contribution technology can make to the analysis of sports performance on the example of team sports such as rugby, football or hockey. A particular focus is on vision-based tracking, so that information about the location and dynamics of the players can be gained without any additional sensors on the players. To start with, prior approaches on visual tracking are extensively reviewed and analysed. In this thesis, methods to deal with the difficulties in visual tracking to handle the target appearance changes caused by intrinsic (e.g. pose variation) and extrinsic factors, such as occlusion, are proposed. This analysis highlights the importance of the proposed visual tracking algorithms, which reflect these challenges and suggest robust and accurate frameworks to estimate the target state in a complex tracking scenario such as a sports scene, thereby facilitating the tracking process. Next, a framework for continuously tracking multiple targets is proposed. Compared to single target tracking, multi-target tracking such as tracking the players on a sports field, poses additional difficulties, namely data association, which needs to be addressed. Here, the aim is to locate all targets of interest, inferring their trajectories and deciding which observation corresponds to which target trajectory is. In this thesis, an efficient framework is proposed to handle this particular problem, especially in sport scenes, where the players of the same team tend to look similar and exhibit complex interactions and unpredictable movements resulting in matching ambiguity between the players. The presented approach is also evaluated on different sports datasets and shows promising results. Finally, information from the proposed tracking system is utilised as the basic input for further higher level performance analysis such as tactics and team formations, which can help coaches to design a better training plan. Due to the continuous nature of many team sports (e.g. soccer, hockey), it is not straightforward to infer the high-level team behaviours, such as players’ interaction. The proposed framework relies on two distinct levels of performance analysis: low-level performance analysis, such as identifying players positions on the play field, as well as a high-level analysis, where the aim is to estimate the density of player locations or detecting their possible interaction group. The related experiments show the proposed approach can effectively explore this high-level information, which has many potential applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PhD project addresses the potential of using concentrating solar power (CSP) plants as a viable alternative energy producing system in Libya. Exergetic, energetic, economic and environmental analyses are carried out for a particular type of CSP plants. The study, although it aims a particular type of CSP plant – 50 MW parabolic trough-CSP plant, it is sufficiently general to be applied to other configurations. The novelty of the study, in addition to modeling and analyzing the selected configuration, lies in the use of a state-of-the-art exergetic analysis combined with the Life Cycle Assessment (LCA). The modeling and simulation of the plant is carried out in chapter three and they are conducted into two parts, namely: power cycle and solar field. The computer model developed for the analysis of the plant is based on algebraic equations describing the power cycle and the solar field. The model was solved using the Engineering Equation Solver (EES) software; and is designed to define the properties at each state point of the plant and then, sequentially, to determine energy, efficiency and irreversibility for each component. The developed model has the potential of using in the preliminary design of CSPs and, in particular, for the configuration of the solar field based on existing commercial plants. Moreover, it has the ability of analyzing the energetic, economic and environmental feasibility of using CSPs in different regions of the world, which is illustrated for the Libyan region in this study. The overall feasibility scenario is completed through an hourly analysis on an annual basis in chapter Four. This analysis allows the comparison of different systems and, eventually, a particular selection, and it includes both the economic and energetic components using the “greenius” software. The analysis also examined the impact of project financing and incentives on the cost of energy. The main technological finding of this analysis is higher performance and lower levelized cost of electricity (LCE) for Libya as compared to Southern Europe (Spain). Therefore, Libya has the potential of becoming attractive for the establishment of CSPs in its territory and, in this way, to facilitate the target of several European initiatives that aim to import electricity generated by renewable sources from North African and Middle East countries. The analysis is presented a brief review of the current cost of energy and the potential of reducing the cost from parabolic trough- CSP plant. Exergetic and environmental life cycle assessment analyses are conducted for the selected plant in chapter Five; the objectives are 1) to assess the environmental impact and cost, in terms of exergy of the life cycle of the plant; 2) to find out the points of weakness in terms of irreversibility of the process; and 3) to verify whether solar power plants can reduce environmental impact and the cost of electricity generation by comparing them with fossil fuel plants, in particular, Natural Gas Combined Cycle (NGCC) plant and oil thermal power plant. The analysis also targets a thermoeconomic analysis using the specific exergy costing (SPECO) method to evaluate the level of the cost caused by exergy destruction. The main technological findings are that the most important contribution impact lies with the solar field, which reports a value of 79%; and the materials with the vi highest impact are: steel (47%), molten salt (25%) and synthetic oil (21%). The “Human Health” damage category presents the highest impact (69%) followed by the “Resource” damage category (24%). In addition, the highest exergy demand is linked to the steel (47%); and there is a considerable exergetic demand related to the molten salt and synthetic oil with values of 25% and 19%, respectively. Finally, in the comparison with fossil fuel power plants (NGCC and Oil), the CSP plant presents the lowest environmental impact, while the worst environmental performance is reported to the oil power plant followed by NGCC plant. The solar field presents the largest value of cost rate, where the boiler is a component with the highest cost rate among the power cycle components. The thermal storage allows the CSP plants to overcome solar irradiation transients, to respond to electricity demand independent of weather conditions, and to extend electricity production beyond the availability of daylight. Numerical analysis of the thermal transient response of a thermocline storage tank is carried out for the charging phase. The system of equations describing the numerical model is solved by using time-implicit and space-backward finite differences and which encoded within the Matlab environment. The analysis presented the following findings: the predictions agree well with the experiments for the time evolution of the thermocline region, particularly for the regions away from the top-inlet. The deviations observed in the near-region of the inlet are most likely due to the high-level of turbulence in this region due to the localized level of mixing resulting; a simple analytical model to take into consideration this increased turbulence level was developed and it leads to some improvement of the predictions; this approach requires practically no additional computational effort and it relates the effective thermal diffusivity to the mean effective velocity of the fluid at each particular height of the system. Altogether the study indicates that the selected parabolic trough-CSP plant has the edge over alternative competing technologies for locations where DNI is high and where land usage is not an issue, such as the shoreline of Libya.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last two decades have seen many exciting examples of tiny robots from a few cm3 to less than one cm3. Although individually limited, a large group of these robots has the potential to work cooperatively and accomplish complex tasks. Two examples from nature that exhibit this type of cooperation are ant and bee colonies. They have the potential to assist in applications like search and rescue, military scouting, infrastructure and equipment monitoring, nano-manufacture, and possibly medicine. Most of these applications require the high level of autonomy that has been demonstrated by large robotic platforms, such as the iRobot and Honda ASIMO. However, when robot size shrinks down, current approaches to achieve the necessary functions are no longer valid. This work focused on challenges associated with the electronics and fabrication. We addressed three major technical hurdles inherent to current approaches: 1) difficulty of compact integration; 2) need for real-time and power-efficient computations; 3) unavailability of commercial tiny actuators and motion mechanisms. The aim of this work was to provide enabling hardware technologies to achieve autonomy in tiny robots. We proposed a decentralized application-specific integrated circuit (ASIC) where each component is responsible for its own operation and autonomy to the greatest extent possible. The ASIC consists of electronics modules for the fundamental functions required to fulfill the desired autonomy: actuation, control, power supply, and sensing. The actuators and mechanisms could potentially be post-fabricated on the ASIC directly. This design makes for a modular architecture. The following components were shown to work in physical implementations or simulations: 1) a tunable motion controller for ultralow frequency actuation; 2) a nonvolatile memory and programming circuit to achieve automatic and one-time programming; 3) a high-voltage circuit with the highest reported breakdown voltage in standard 0.5 μm CMOS; 4) thermal actuators fabricated using CMOS compatible process; 5) a low-power mixed-signal computational architecture for robotic dynamics simulator; 6) a frequency-boost technique to achieve low jitter in ring oscillators. These contributions will be generally enabling for other systems with strict size and power constraints such as wireless sensor nodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION In recent years computer systems have become increasingly complex and consequently the challenge of protecting these systems has become increasingly difficult. Various techniques have been implemented to counteract the misuse of computer systems in the form of firewalls, antivirus software and intrusion detection systems. The complexity of networks and dynamic nature of computer systems leaves current methods with significant room for improvement. Computer scientists have recently drawn inspiration from mechanisms found in biological systems and, in the context of computer security, have focused on the human immune system (HIS). The human immune system provides an example of a robust, distributed system that provides a high level of protection from constant attacks. By examining the precise mechanisms of the human immune system, it is hoped the paradigm will improve the performance of real intrusion detection systems. This paper presents an introduction to recent developments in the field of immunology. It discusses the incorporation of a novel immunological paradigm, Danger Theory, and how this concept is inspiring artificial immune systems (AIS). Applications within the context of computer security are outlined drawing direct reference to the underlying principles of Danger Theory and finally, the current state of intrusion detection systems is discussed and improvements suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problems in subject access to information organization systems have been under investigation for a long time. Focusing on item-level information discovery and access, researchers have identified a range of subject access problems, including quality and application of metadata, as well as the complexity of user knowledge required for successful subject exploration. While aggregations of digital collections built in the United States and abroad generate collection-level metadata of various levels of granularity and richness, no research has yet focused on the role of collection-level metadata in user interaction with these aggregations. This dissertation research sought to bridge this gap by answering the question “How does collection-level metadata mediate scholarly subject access to aggregated digital collections?” This goal was achieved using three research methods: • in-depth comparative content analysis of collection-level metadata in three large-scale aggregations of cultural heritage digital collections: Opening History, American Memory, and The European Library • transaction log analysis of user interactions, with Opening History, and • interview and observation data on academic historians interacting with two aggregations: Opening History and American Memory. It was found that subject-based resource discovery is significantly influenced by collection-level metadata richness. The richness includes such components as: 1) describing collection’s subject matter with mutually-complementary values in different metadata fields, and 2) a variety of collection properties/characteristics encoded in the free-text Description field, including types and genres of objects in a digital collection, as well as topical, geographic and temporal coverage are the most consistently represented collection characteristics in free-text Description fields. Analysis of user interactions with aggregations of digital collections yields a number of interesting findings. Item-level user interactions were found to occur more often than collection-level interactions. Collection browse is initiated more often than search, while subject browse (topical and geographic) is used most often. Majority of collection search queries fall within FRBR Group 3 categories: object, concept, and place. Significantly more object, concept, and corporate body searches and less individual person, event and class of persons searches were observed in collection searches than in item searches. While collection search is most often satisfied by Description and/or Subjects collection metadata fields, it would not retrieve a significant proportion of collection records without controlled-vocabulary subject metadata (Temporal Coverage, Geographic Coverage, Subjects, and Objects), and free-text metadata (the Description field). Observation data shows that collection metadata records in Opening History and American Memory aggregations are often viewed. Transaction log data show a high level of engagement with collection metadata records in Opening History, with the total page views for collections more than 4 times greater than item page views. Scholars observed viewing collection records valued descriptive information on provenance, collection size, types of objects, subjects, geographic coverage, and temporal coverage information. They also considered the structured display of collection metadata in Opening History more useful than the alternative approach taken by other aggregations, such as American Memory, which displays only the free-text Description field to the end-user. The results extend the understanding of the value of collection-level subject metadata, particularly free-text metadata, for the scholarly users of aggregations of digital collections. The analysis of the collection metadata created by three large-scale aggregations provides a better understanding of collection-level metadata application patterns and suggests best practices. This dissertation is also the first empirical research contribution to test the FRBR model as a conceptual and analytic framework for studying collection-level subject access.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last years there has been a clear evolution in the world of telecommunications, which goes from new services that need higher speeds and higher bandwidth, until a role of interactions between people and machines, named by Internet of Things (IoT). So, the only technology able to follow this growth is the optical communications. Currently the solution that enables to overcome the day-by-day needs, like collaborative job, audio and video communications and share of les is based on Gigabit-capable Passive Optical Network (G-PON) with the recently successor named Next Generation Passive Optical Network Phase 2 (NG-PON2). This technology is based on the multiplexing domain wavelength and due to its characteristics and performance becomes the more advantageous technology. A major focus of optical communications are Photonic Integrated Circuits (PICs). These can include various components into a single device, which simpli es the design of the optical system, reducing space and power consumption, and improves reliability. These characteristics make this type of devices useful for several applications, that justi es the investments in the development of the technology into a very high level of performance and reliability in terms of the building blocks. With the goal to develop the optical networks of future generations, this work presents the design and implementation of a PIC, which is intended to be a universal transceiver for applications for NG-PON2. The same PIC will be able to be used as an Optical Line Terminal (OLT) or an Optical Network Unit (ONU) and in both cases as transmitter and receiver. Initially a study is made of Passive Optical Network (PON) and its standards. Therefore it is done a theoretical overview that explores the materials used in the development and production of this PIC, which foundries are available, and focusing in SMART Photonics, the components used in the development of this chip. For the conceptualization of the project di erent architectures are designed and part of the laser cavity is simulated using Aspic™. Through the analysis of advantages and disadvantages of each one, it is chosen the best to be used in the implementation. Moreover, the architecture of the transceiver is simulated block by block through the VPItransmissionMaker™ and it is demonstrated its operating principle. Finally it is presented the PIC implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION In recent years computer systems have become increasingly complex and consequently the challenge of protecting these systems has become increasingly difficult. Various techniques have been implemented to counteract the misuse of computer systems in the form of firewalls, antivirus software and intrusion detection systems. The complexity of networks and dynamic nature of computer systems leaves current methods with significant room for improvement. Computer scientists have recently drawn inspiration from mechanisms found in biological systems and, in the context of computer security, have focused on the human immune system (HIS). The human immune system provides an example of a robust, distributed system that provides a high level of protection from constant attacks. By examining the precise mechanisms of the human immune system, it is hoped the paradigm will improve the performance of real intrusion detection systems. This paper presents an introduction to recent developments in the field of immunology. It discusses the incorporation of a novel immunological paradigm, Danger Theory, and how this concept is inspiring artificial immune systems (AIS). Applications within the context of computer security are outlined drawing direct reference to the underlying principles of Danger Theory and finally, the current state of intrusion detection systems is discussed and improvements suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of fluid behavior in multiphase flow is very relevant to guarantee system safety. The use of equipment to describe such behavior is subjected to factors such as the high level of investments and of specialized labor. The application of image processing techniques to flow analysis can be a good alternative, however, very little research has been developed. In this subject, this study aims at developing a new approach to image segmentation based on Level Set method that connects the active contours and prior knowledge. In order to do that, a model shape of the targeted object is trained and defined through a model of point distribution and later this model is inserted as one of the extension velocity functions for the curve evolution at zero level of level set method. The proposed approach creates a framework that consists in three terms of energy and an extension velocity function λLg(θ)+vAg(θ)+muP(0)+θf. The first three terms of the equation are the same ones introduced in (LI CHENYANG XU; FOX, 2005) and the last part of the equation θf is based on the representation of object shape proposed in this work. Two method variations are used: one restricted (Restrict Level Set - RLS) and the other with no restriction (Free Level Set - FLS). The first one is used in image segmentation that contains targets with little variation in shape and pose. The second will be used to correctly identify the shape of the bubbles in the liquid gas two phase flows. The efficiency and robustness of the approach RLS and FLS are presented in the images of the liquid gas two phase flows and in the image dataset HTZ (FERRARI et al., 2009). The results confirm the good performance of the proposed algorithm (RLS and FLS) and indicate that the approach may be used as an efficient method to validate and/or calibrate the various existing equipment used as meters for two phase flow properties, as well as in other image segmentation problems.