878 resultados para HIGH-DENSITY LIPOPROTEIN (HDL)
Resumo:
The high intensity zone within the Jameson Cell is the downcomer. It is largely external and separated from the flotation tank. This, together with operation of the downcomer under vacuum, rather than at elevated pressure and the absence of moving parts, allows ready access to the high intensity zone for measurement and analysis. Experimentation was conducted allowing measurements of recovery for residence times of between 20 milliseconds and ten seconds within the downcomer of a Jameson Cell. The affect of aeration rate on the recovery of different particle sizes was also studied.
Resumo:
A model system is presented using human umbilical vein endothelial cells (HUVECs) to investigate the role of homocysteine (Hcy) in atherosclerosis. HUVECs are shown to export Hcy at a rate determined by the flux through the methionine/Hcy pathway. Additional methionine increases intracellular methionine, decreases intracellular folate, and increases Hcy export, whereas additional folate inhibits export. An inverse relationship exists between intracellular folate and Hcy export. Hcy export may be regulated by intracellular S-adenosyl methionine rather than by Hcy. Human LDLs exposed to HUVECs exporting Hcy undergo time-related lipid oxidation, a process inhibited by the thiol trap dithionitrobenzoate. This is likely to be related to the generation of hydroxyl radicals, which we show are associated with Hcy export. Although Hcy is the major oxidant, cysteine also contributes, as shown by the effect of glutamate. Finally, the LDL oxidized in this system showed a time-dependent increase in uptake by human macrophages, implying an upregulation of the scavenger receptor. These results suggest that continuous export of Hcy from endothelial cells contributes to the generation of extracellular hydroxyl radicals, with associated oxidative modification of LDL and incorporation into macrophages, a key step in atherosclerosis. Factors that regulate intracellular Hcy metabolism modulate these effects. Copyright © 2005 by the American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
Generation of neoepitopes on apolipoprotein B within oxidised low-density lipoprotein (LDL) is important in the unregulated uptake of LDL by monocytic scavenger receptors (CD36, SR-AI, LOX-1). Freshly isolated LDL was oxidised by peroxyl radicals generated from the thermal decomposition of an aqueous azo-compound. We describe that formation of carbonyl groups on the protein component is early as protein oxidation was seen after 90min. This is associated with an increased propensity for LDL uptake by U937 monocytes. Three classes of antioxidants (quercetin, dehydroepiandrosterone (DHEA) and ascorbic acid) have been examined for their capacity to inhibit AAPH-induced protein oxidation, (protein carbonyls, Δ electrophoretic mobility and LDL uptake by U937 monocytes). CD36 expression was assessed by flow cytometry and was seen to be unaltered by oxidised LDL uptake. All three classes were effective antioxidants, quercetin (P<0.01), ascorbic acid (P<0.01), DHEA (P<0.05). As LDL protein is the control point for LDL metabolism, the degree of oxidation and protection by antioxidants is likely to be of great importance for (patho)-physiological uptake of LDL by monocytes. © 2003 Elsevier B.V. All rights reserved.
Resumo:
The total thermoplastics pipe market in west Europe is estimated at 900,000 metric tonnes for 1977 and is projected to grow to some 1.3 million tonnes of predominantly PVC and polyolefins pipe by 1985. By that time, polyethylene for gas distribution pipe and fittings will represent some 30% of the total polyethylene pipe market. The performance characteristics of a high density polyethylene are significantly influenced by both molecular weight and type of comonomer; the major influences being in the long-term hoop stress resistance and the environmental stress cracking resistance. Minor amounts of hexene-1 are more effective than comonomers lower in the homologous series, although there is some sacrifice of density related properties. A synergistic improvement is obtained by combining molecular weight increase with copolymerisation. The Long-term design strength of polyethylene copolymers can be determined from hoop stress measurement at elevated temperatures and by means of a separation factor of approximate value 22, extrapolation can be made to room temperature performance for a water environment. A polyethylene of black composition has a sufficiently improved performance over yellow pigmented pipe to cast doubts on the validity of internationally specifying yellow coded pipe for gas distribution service. The chemical environment (condensate formation) that can exist in natural gas distribution networks has a deleterious effect on the pipe performance the reduction amounting to at least two decades in log time. Desorption of such condensate is very slow and the influence of the more aggressive aromatic components is to lead to premature stress cracking. For natural gas distribution purposes, the design stress rating should be 39 Kg/cm2 for polyethylenes in the molecular weight range of 150 - 200,000 and 55 Kg/cm2 for higher molecular weight materials.