899 resultados para HEPATIC STEATOSIS
Resumo:
何首乌为常用中药,由何首乌及含何首乌的中成药制剂所引起的不良反应也时见报道,科学阐明不良反应的物质基础并提出解决方案对何首乌的使用十分重要。本论文研究了何首乌炮制前后KM小鼠肝脏毒性基因表达谱、生物活性及化学成分的变化。所获结果支持何首乌炮制的目的是减毒、改性(改变药效),何首乌生、熟异治的观点。制首乌对抑郁症的效果显著优于生首乌,这与本草所记载的何首乌炮制后补肝肾、益精血,归肝、肾经一致。 主要结果如下: 1、 生、制首乌的毒理基因芯片研究结果 何首乌的不良反应主要表现在肝损害方面。本研究建立了生何首乌和制何首乌不同剂量的肝毒性作用模型,体重指标统计发现生何首乌各剂量组平均体重显著下降,中剂量组(10 g/kg.d)体重下降20 %,高剂量组(20 g/kg.d)体重下降42%,50%动物死亡,提示动物机体能量代谢障碍;基因芯片研究结果表明何首乌是CYP450的抑制剂,生何首乌相对于制何首乌CYP3A4、CYP4A5显著下调,导致毒性成分在体内的吸收增加,服用大剂量的生何首乌后产生明显的肝毒性;主要对以下六条Pathway产生影响:①PPAR signaling pathway,主要毒性靶基因有RXRB CYP7a1、Acadl、Apoa2、Cyp4a、 FABP2 、MAPKKK5等基因。②Calcium signaling pathway,主要毒性靶基因有CAMK2B、CACNA1F、S100A1、 F2R、Ryr1、Slc8a2、Camk4 ③Neuroactive ligand-receptor interaction,主要毒性靶基因有Chrm4、 Ntsr2 、 GABRR1、 GRIK3、F2R等基因。④Wnt signaling pathway,主要毒性靶基因有Daam2、Rac1 等基因。⑤Complement and coagulation cascades,主要毒性靶基因有F2R、Serpina1b、Cfi 、FGA等基因。⑥Oxidative hosphorylation,主要毒性靶基因有Atp5e、NDUFA1等基因。生何首乌毒性明显强于制首乌,且生何首乌水煎液的毒性大于生何乌首丙酮提取物的毒性,这一结果表明,何首乌主要的毒性成分很可能并不仅仅是传统所认为的以大黄素为代表的蒽醌类化合物,而是何首乌中大量存在的有效组分二苯乙烯苷与大黄素相互作用的结果,这一研究结果与前述的何首乌对肝药酶的影响是一致的。后续生、制首乌的化学成分差异研究表明,炮制后二苯乙烯苷含量明显降低:生首乌为5.512 %、清蒸制首乌为3.811 %、豆制首乌为3.538 %,大黄素的含量炮制后显著升高,生首乌为0.094 %、清蒸制首乌为0.119 %、豆制首乌为0.126 %。 2 生、制首乌药效差异研究结果 本文采用慢性中等强度不可预知应激刺激模型(chronic unpredictable mild stress, CUMS)和动物行为绝望实验法,研究生、制首乌抗抑郁活性的差异,制首乌(5 g/kg.d)与模型组相比有显著差异(P< 0.01),生首乌制首乌(5g/kg.d)与模型组相比无显著差异,这一结果表明制首乌抗抑郁活性显著优于生首乌。 本文比较了生、制首乌对四氧嘧啶糖尿病模型小鼠血糖的影响的差异,生首乌(5 g/kg.d)与模型组相比有显著差异(P< 0.01),制首乌(5 g/kg.d)与模型组相比无显著差异,这一结果表明生首乌降糖活性优于制首乌。这一结果与历代中医古书中生首乌治疗消渴症(糖尿病)的记载一致。 3生、制首乌化学成分差异的研究结果 本文选用HPLC-DAD指纹图谱技术结合药效成分含量测定来研究生、制首乌化学成分的差异。炮制后,何首乌中的主要化学成分并未消失,只是其含量发生了改变。炮制后二苯乙烯苷含量明显降低:生首乌为5.512 %、清蒸制首乌为3.811 %、豆制首乌为3.538 %,大黄素的含量炮制后显著升高,生首乌为0.094 %、清蒸制首乌为0.119 %、豆制首乌为0.126 %。 综上所述,炮制前后何首乌中二苯乙烯苷和大黄素含量比的变化可能是何首乌炮制减毒、改性的物质基础。 根据上述结果我们建立了生、制首乌的质量控制新模式。 In recent years, some adverse drug reactions (ADR) about some traditional Chinese medicine were reported at times. As a Chinese medicine most in use, the ADRs of Radix Polygoni multiflori (RPM) and the medicines containing the RPM were also mentioned. The resolution of the problems caused by the ADRs is very important for the use of the RPM as a medicine. The process (or preparation) is a significant feature for the clinical use of the Chinese medicine and an important technology for the safe use and good effect of the Chinese medicine. By processing, the toxicity of the Chinese medicine can be reduced, its properties can be changed and curative effect can be enhanced at the same time. The changes of the gene expression profiles for KM mice hepatotoxic effects, and the change of the biological activity and the chemical composition after being processed of the RPm were studied in the present dissertation. The RPm heatotoxicity mechanism and the toxicity target genes were explained on the gene level for the first time. With the antidepressant activity, and the hypoglycemic effect as the target, the differences on the pharmacodynamics between the processed RPm and unprocessed RPm, for the first time, were investigated. The results obtained show that the antidepressant activity of the processed RPM is far higher than the ones of unprocessed RPm. As we know, the results were reported for the first time. The quality control systems (QCS) for the processed and the unprocessed RPm were founded. The HPLC-DAD was used in the systems founded on the basis of the toxicology and the pharmacodynamics experiments. As we know, the OCSs were reported for the first time. The above-mentioned experimental results confirm that the unique process theory of the traditional Chinese medicine (TCM) used for the process of the Radix Polygoni multiflori (RPm) is correct, i.e after being processed the toxicity of the RPm decreases and its Pharmacodynamic effects change. It is known to author that there have been no similar reports in the literatures up to now. The main experimental results are summarized as follows: 1 The results on the mice toxicology gene chip for the unprocessed and processed RPm The KM mice hepatotoxic model caused by the RPm at the different dosages was established in the present study. The results obtained show that the mouse average body weight obviously decreased in the groups at the different dosages of the unprocessed RPm: the 10 g/kg.d .group decreased 20%; 20 g/kg.d. group decreased 42%, and 50% mice died at 20 g/kg.d. group. The main experimental results on the mice toxicology gene chip The RPm is the CYP450 inhibitor. As compared with the processd RPm, the CYP3A4, CYP4A5 of the unprocessed RPm demonstrate the marked downregulation, which leads to the increase of the poison absorbtion into the body with the result that the unprocessed RPm yields the marked hepatotoxication. The hepatotoxication was produced because the following 6 pathways were affected: ①PPAR signaling pathway, the chief toxicity target genes are RXRB, CYP7a1, Acadl, Apoa2, Cyp4a, FABP2 and MAPKKK5 etc. ②Calcium signaling pathway, the chief toxicity target genes are CAMK2B, CACNA1F, S100A1, F2R, Ryr1,Slc8a2 and Camk4 etc. ③Neuroactive ligand-receptor interaction, the chief toxicity target genes are Chrm4, Ntsr2, GABRR1, GRIK3 and F2R etc. ④Wnt signaling pathway, the chief toxicity target genes are Daam2, Rac1 etc. ⑤Complement and coagulation cascades, the chief toxicity target genes are F2R, Serpina1b, Cfi and FGA etc. ⑥Oxidative phosphorylation, the chief toxicity target genes are Atp5e, NDUFA1 etc. The above experimental results, for the first time , demonstrate on the gene level that the unprocessed Rpm toxicity is far stronger than the processed RPm one, and the toxicity of the water decoction of the unprocessed RPm is greater than the one of its acetone extracts, which shows that the chief toxicity components of the RPm are probably not only the anthraquinones, for example, the emodin, but the complex compounds produced by the interaction between the emondin and the stilbene glucoside which is the largest component of the unprocessed RPm. The result is accordance with the above effect of the RPm on the hepatic drugenzyme. Aftter being processed, in fact, the content of the stibene glucoside in the RPm markedly decreases. 2. The results on the pharmacodynamic differences between the unprocessed and processed RPm The results obtained show that the effects of processing on RPm pharmacodynamic behaviour received in the Chinese Material Medica are correct. It is known to author that this is the first experimental result in the research materials now available. The chief results are as follows: For the treatment of the antidepressant, the curative effect of the processed RPm is far better than the one of the unprocessed RPm. By contrast with the above results, the hypoblycemic effect of the unprocessed RPm is better than the one of the processed RPm. 3. The results on the Chemical Composition The results obtained by using HPLC-DAD fingerprint and by the determination of effective component content show that the main chemical components in the RPm after being processed do not disappear, but their contents change. The contents of the stilbene glucoside (SG) and emodin in the different samples were determined as follows: SG contents 5.512 % for the unprocessed RPm 3.811 % for the processed RPm (Steamed) 3.588 % for the processed RPm (black soybean) Emodin contents 0.094 % for the unprocessed RPm 0.119 % for the processed RPm (Steamed) 0.126 % for the processed RPm (black soybean) The combination of above experimental results on the toxicity, the pharmacodynamics and the chemical composition indicates that the changes of the content ratio of SG/emodin may be the substance base of the toxicity decrease and pharmacodynamic changes of the RPM by the processing.
Resumo:
The intestinal bacterial metabolites of ginsenosides are responsible for the main pharmacological activities of ginseng. The purpose of this study was to find whether these metabolites influence hepatic metabolic enzymes and to predict the potential for ginseng-prescription drug interactions. Utilizing the probe reaction of CYP3A activity, testosterone 6beta-hydroxylation, the effects of derivatives of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol families on CYP3A activity in rat liver microsomes were assayed. Our results showed that ginsenosides from the 20(S)-protopanaxadiol and 20(S)-protopanaxatriol family including Rb-1, Rb-2, Rc, Compound-K, Re, and Rg(1), had no inhibitory effect, whereas Rg(2), 20(S)-panaxatriol and 20(S)-protopanaxatriol exhibited competitive inhibitory activity against CVP3A activity in these microsomes with the inhibition constants (K) of 86.4+/-0.8mum, 1.7+/-0.1mum, and 3.2+/-0.2 mum, respectively. This finding demonstrates that differences in their chemical structure might influence the effects of ginsenosides on CYP3A activity and that ginseng-derived products might have potential for significant ginseng-drug interactions.
Resumo:
The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of H-1 NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. H-1 NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Kreb's cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the Perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar.
Resumo:
Two gadolinium-sandwiched complexes with tungstosilicates, K-13[Gd(SiW11O39)(2)] (Gd(SiW11)(2)) and K11H6[Gd2O3(SiW9O34)(2)] (Gd-3(SiW9)(2)), have been investigated by in vitro and in vivo experiments as potential contrast agents for magnetic resonance imaging (MRI). T-1-relaxivity of Gd(SiW11)(2)was 6.59 mM(-1) . s(-1) in aqueous solution and 6.85 mM(-1) . s(-1) in 0.725 mmol . L-1 bovine serum albumin solution at 25degreesC and 9.39 T, respectively. The corresponding T-1-relaxivity of Gd-3(SiW9)(2) was 12.6 and 19.3 mM(-1) . s(-1) per Gd, respectively. MRI for Sprague-Dawley rats showed longer and more remarkable enhancement in rat liver after i.v. injection of these two complexes: 39.4 +/- 3.9% and 57.4 +/- 11.6% within the first 30 min after injection, 31.2 +/- 2.6% and 39.9 +/- 7.6% in the next 60 min for Gd(SiW11)(2) and Gd-3(SiW9)(2) at doses of 0.081 and 0.084 mmol Gd/kg, respectively. Our preliminary in vitro and in vivo study indicates that Gd(SiW11)(2) and Gd-3(SiW9)(2) are favorable candidates for hepatic contrast agents for MRI. However, the two complexes exhibit higher acute toxicity and need to be modified and studied further before clinical use.
Resumo:
The subacute toxicity of aristolochic acid (AA) was investigated by H-1 NMR spectroscopic and pattern recognition (PR)-based metabonomic methods. Model toxins were used to enable comparisons of the urinary profiles from rats treated with known toxicants and AA at various time intervals. Urinary H-1 NMR spectra were data-processed and analyzed by pattern recognition method. The result of visual comparison of the spectra showed that AA caused a renal proximal tubular and papillary lesion and a slight hepatic impair. Pattern recognition analysis indicated that the renal proximal tubule lesion was the main damage induced by AA, and the renal toxicity induced by AA was a progressive course with the accumulation of dosage by monitoring the toxicological processes from onset, development and part-recovery. These results were also supported by the conventional clinical biochemical parameters.
Resumo:
Four neutral gadolinium complexes of diethylenetriaminepentaacetic acid (DTPA)-bisamide derivatives have been synthesized and characterized. Their potential application as tissue-specific and low-osmolarity MRI contrast agents has been evaluated by in vitro and in vivo experiments. Their measured relaxivities in D2O, bovine serum albumin and human serum transferrin solutions showed favorable relaxation ability. In vivo studies have proven that Gd(DTPA-BDMA), Gd(DTPA-BIN), and Gd(cyclic-DTPA-1,2-pn) could be promising liver-specific MRI contrast agents and Gd(DTPA-BDMA), and Gd(cyclic-DTPA-1,2-pn) have favorable renal excretion capability. Among them, Gd(cyclic-DTPA-1,2-pn) is a more powerful hepatic contrast agent and Gd(DTPA-BIN) provides the stable imaging contrast for several hours. They also show a lower toxicity.
Resumo:
High resolution H-1 nuclear magnetic resonance ( NMR) spectroscopy has been employed to assess long-term toxicological effects of ChangLe (a kind of rare earth complex applied in agriculture). Male Wistar rats were administrated orally with ChangLe at doses of 0, 0.1, 0.2, 2.0, 10 and 20 mg/kg body weight daily, respectively, for 6 months. Urine was collected at-day 30, 60, go and serum samples were taken after 6 months. Many low-molecular weight metabolites were identified by H-1 NMR spectra of rat urine. A decrease in citrate and an increase in ketone bodies, creatinine, DMA, DMG, TMAO, and taurine in the urine of the rats. receiving high doses were found by H-1 NMR spectra. These may mean that high-dosage of ChangLe impairs the specific region of liver and kidney, such as renal tubule and mitochondria. The decrease in citrate and the increase in succinate and alpha-ketoglutarate were attributed to a combination of the inhibition of certain citric acid enzymes, renal tubular acidosis and the abnormal fatty acid catabolism. The information of the renal capillary necrosis could be derived from the increase in DMIA, DMG and TMAO. The increase in taurine was due to hepatic mitochondria dysfunction. The conclusions were supported by the results of biochemical measure. merits and enzymatic assay.
Resumo:
A full length amphioxus cDNA, encoding a novel phosducin-like protein (Amphi-PhLP), was identified for the first time from the gut cDNA library of Branchiostoma belcheri. It is comprised of 1 550 bp and an open reading frame (ORF) of 241 amino acids, with a predicted molecular mass of approximately 28 kDa. In situ hybridization histochemistry revealed a tissue-specific expression pattern of Amphi-PhLP with the high levels in the ovary, and at a lower level in the hind gut and testis, hepatic caecum, gill, endostyle, and epipharyngeal groove, while it was absent in the muscle, neural tube and notochord. In the Chinese Hamster Ovary (CHO) cells transfected with the expression plasmid pEGFP-N1/Amphi-PhLP, the fusion protein was targeted in the cytoplasm of CHO cells, suggesting that Amphi-PhLP is a cytosolic protein. This work may provide a framework for further understanding of the physiological function of Amphi-PhLP in B. belcheri.
Resumo:
The progress in genome sequencing has led to an increasing submission of uncharacterized hypothetical genes with the domain of unknown function, DUF985, in GenBank, and none of these genes is related to a known protein. We therefore underwent an experimental study to identify the function of a DUF985 domain-containing hypothetical gene BbDUF985 (GenBank Accession No. AY273818) isolated from amphioxus Branchiostoma belcheri (B. belcheri). BbDUF985 was successfully expressed in both prokaryotic and eukaryotic systems, and its recombinant proteins expressed in both systems definitely exhibited an activity of phosphoglucose isomerase (PGI). Both tissue-section in situ hybridization and immunohistochemistry demonstrated that BbDUF985 was expressed in a tissue-specific manner, with most abundant levels in the hepatic caecum and ovary. In CHO cells transfected with the expression plasmid pEGFP-N1/BbDUF985, the fusion protein was targeted in the cytoplasm of CHO cells, suggesting that BbDUF985 is a cytosolic protein. In contrast, Western blotting indicated that BbDUF985 was also present in amphioxus humoral fluids, suggesting that it exists as a secreted protein as well. Our study provided a framework for further understanding the biochemical properties and physiological function of DUF985-containing hypothetical proteins in other species. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Six species belonging to two families of Hemichordata have previously been recorded in Chinese waters. This paper records the discovery and description of a new species of the genus Glandiceps found in Jiaozhou Bay, Qingdao, Shandong Province, named Glandiceps qingdaoensis. The new species has a long proboscis with dorsal and ventral grooves, a stomochord with a long vermiform process, a proboscis cavity with a dorsal median, right and left glomeruli, right and left glomeruli very large and encircling the stomochord, a proboscis skeleton in the cavity extends into the median posterior of the collar, a well-developed dorsal ventral muscular septum in the proboscis cavity dividing the cavity completely into two separate parts. The collar cord is without giant nerve roots. The trunk with four distinct regions that can be recognized externally: branchial-genital region, genital region, hepatic region, and intestinal region. The dorsal pharynx is large and the gill pores are small. The tongue bars are encircled by vesicles, and the first gonad commences at the level of the second or third gill slit.
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
It has become clear that inflammation is beneficial to man, there are situations though that the inflammatory response causes damage to the host that is harmful to health. When the inflammatory response fails or is too strong, the health of the host is damaged and disease can occur. The implication of intestinal disease caused by an ineffective immune response is of great social and economic burden to society. The overarching purpose of this thesis is to assess inflammatory signalling targets associated with immune mediated disorders such as IBD, IBS and inflammatory liver disease. By assessing these targets and modifying their function I hope to contribute and expand further the pre-existing information on these disorders and improve the therapeutic interventions available in these debilitating conditions. I will assess the role of inflammation in disorders of the GI tract and liver IBD, IBS, hepatic inflammatory injury and furthermore, I will use pharmaceutical agents to activate and suppress components of the immune system. I will examine the inflammatory response in experimental models of disease for IBD and liver injury, I will attempt to alter these pathways using pharmaceutical intervention to delineate the disease causing mechanism that may lead to clinically relevant therapeutic interventions. In regards to IBS, I will attempt to improve the existing knowledge that exists in relation to the pathogenesis of this functional bowel disorder. I will attempt to define a mechanism by which the low grade mucosal inflammation that has been demonstrated by others arises and what this inflammation is induced by. The overall aim of this thesis is to attempt to further understand the mechanisms behind GI and liver disease. Looking at the inflammatory response in these specific conditions and how they can be altered may lead to exciting new therapies for inflammatory conditions in the gastrointestinal tract.
Resumo:
This thesis was undertaken to investigate the relevance of two bacterial isoprenoid biosynthetic pathways (Mevalonate (MVAL) and 2-C-methyl-D-erythritol 4-phosphate (MEP)) for host-microbe interactions. We determined a significant reduction in microbial diversity in the murine gut microbiota (by next generation sequencing) following oral administration of a common anti-cholesterol drug Rosuvastatin (RSV) that targets mammalian and bacterial HMG-CoA reductase (HMG-R) for inhibition of MVAL formation. In tandem we identified significant hepatic and intestinal off-target alterations to the murine metabolome indicating alterations in inflammation, bile acid profiles and antimicrobial peptide synthesis with implications on community structure of the gastrointestinal microbiota in statin-treated animals. However we found no effect on local Short Chain Fatty Acid biosynthesis (metabolic health marker in our model). We demonstrated direct inhibition of bacterial growth in-vitro by RSV which correlated with reductions in bacterial MVAL formation. However this was only at high doses of RSV. Our observations demonstrate a significant RSV-associated impact on the gut microbiota prompting similar human analysis. Successful deletion of another MVAL pathway enzyme (HMG-CoA synthase (mvaS)) involved in Listeria monocytogenes EGDe isoprenoid biosynthesis determined that the enzyme is non-essential for normal growth and in-vivo pathogenesis of this pathogen. We highlight potential evidence for alternative means of synthesis of the HMG-CoA substrate that could render mvaS activity redundant under our test conditions. Finally, we showed by global gene expression analysis (Massive Analysis of cDNA Ends (MACE RNA-seq) a significant role for the penultimate MEP pathway metabolite (E)-4-hydroxy-3-methyl-2-but-2-enyl pyrophosphate (HMBPP) in significant up regulation of genes of immunity and antigen presentation in THP-1 cells at nanomolar levels. We infected THP-1 cells with wild type or HMBPP under/over-producing L. monoctyogenes EGDe mutants and determined subtle effects of HMBPP upon overall host responses to Listeria infection. Overall our findings provide greater insights regarding bacterial isoprenoid biosynthetic pathways for host-microbe/microbe-host dialogue.