893 resultados para Gene expression.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xylella fastidiosa inhabits the plant xylem, a nutrient-poor environment, so that mechanisms to sense and respond to adverse environmental conditions are extremely important for bacterial survival in the plant host. Although the complete genome sequences of different Xylella strains have been determined, little is known about stress responses and gene regulation in these organisms. In this work, a DNA microarray was constructed containing 2,600 ORFs identified in the genome sequencing project of Xylella fastidiosa 9a5c strain, and used to check global gene expression differences in the bacteria when it is infecting a symptomatic and a tolerant citrus tree. Different patterns of expression were found in each variety, suggesting that bacteria are responding differentially according to each plant xylem environment. The global gene expression profile was determined and several genes related to bacterial survival in stressed conditions were found to be differentially expressed between varieties, suggesting the involvement of different strategies for adaptation to the environment. The expression pattern of some genes related to the heat shock response, toxin and detoxification processes, adaptation to atypical conditions, repair systems as well as some regulatory genes are discussed in this paper. DNA microarray proved to be a powerful technique for global transcriptome analyses. This is one of the first studies of Xylella fastidiosa gene expression in vivo which helped to increase insight into stress responses and possible bacterial survival mechanisms in the nutrient-poor environment of xylem vessels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pellegrino R, Sunaga DY, Guindalini C, Martins RC, Mazzotti DR, Wei Z, Daye ZJ, Andersen ML, Tufik S. Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery. Physiol Genomics 44: 1003-1012, 2012. First published September 4, 2012; doi: 10.1152/physiolgenomics.00058.2012.-Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. Using high-resolution microarrays we evaluated the gene expression profiles of healthy male volunteers who underwent 60 h of prolonged wakefulness (PW) followed by 12 h of sleep recovery (SR). Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (Baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response, as well as diverse immune system responses, such as natural killer pathways including killer cell lectin-like receptors family, as well as granzymes and T-cell receptors, which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was downregulated following PW and upregulated after SR compared with PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC, and CEACAM genes confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to identify genes that could be used as suitable markers for molecular recognition of phenological stages during coffee (Coffea arabica) fruit development. Four cultivars were evaluated as to their differential expression of genes associated to fruit development and maturation processes. Gene expression was characterized by both semi-quantitative and quantitative RT-PCR, in fruit harvested at seven different developmental stages, during three different seasons. No size polymorphisms or differential expression were observed among the cultivars for the evaluated genes; however, distinct expression profiles along fruit development were determined for each gene. Four out of the 28 evaluated genes exhibited a regular expression profile in all cultivars and harvest seasons, and, therefore, they were validated as candidate phenological markers of coffee fruit. The gene a-galactosidase can be used as a marker of green stage, caffeine synthase as a marker of transition to green and yellowish-green stages, and isocitrate lyase and ethylene receptor 3 as markers of late maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoxia is one of many factors involved in the regulation of the IGF system. However, no information is available regarding the regulation of the IGF system by acute hypoxia in humans. Objective: The aim of this study was to evaluate the effect of acute hypoxia on the IGF system of children. Design: Twenty-seven previously health children (14 boys and 13 girls) aged 15 days to 9.5 years were studied in two different situations: during a hypoxemic state (HS) due to acute respiratory distress and after full recovery to a normoxemic state (NS). In these two situations oxygen saturation was assessed with a pulse-oximeter and blood samples were collected for serum IGF-I, IGF-II, IGFBP-1, IGFBP-3, ALS and insulin determination by ELISA; fluoroimmunometric assay determination for GH and also for IGF1R gene expression analysis in peripheral lymphocytes by quantitative real-time PCR. Data were paired and analyzed by the Wilcoxon non-parametric test. Results: Oxygen saturation was significantly lower during HS than in NS (P<0.0001). IGF-I and IGF-II levels were lower during HS than in NS (P<0.0001 and P=0.0004. respectively). IGFBP-3 levels were also lower in HS than in NS (P=0.0002) while ALS and basal GH levels were higher during HS (P=0.0015 and P=0.014, respectively). Moreover, IGFBP-1 levels were higher during HS than in NS (P=0.004). No difference was found regarding insulin levels. The expression of IGF1R mRNA as 2(-Delta Delta CT) was higher during HS than in NS (P=0.03). Conclusion: The above results confirm a role of hypoxia in the regulation of the IGF system also in humans. This effect could be direct on the liver and/or mediated by GH and it is not restricted to the hepatocytes but involves other cell lines. During acute hypoxia a combination of alterations usually associated with reduced IGF action was observed. The higher expression of IGF1R mRNA may reflect an up-regulation of the transcriptional process. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Glucose transporter 4 (GLUT4) is highly expressed in muscle and fat tissue, where triiodothyronine (T-3) induces solute carrier family 2 facilitated glucose transporter member 4 (SLC2A4) gene transcription. T-3 was also shown to rapidly increase glucose uptake in myocytes exposed to cycloheximide, indicating that it might act nongenomically to regulate GLUT4 availability. We tested this hypothesis by evaluating, in thyroidectomized rats (Tx rats), the acute and/or chronic T-3 effects on GLUT4 mRNA expression and polyadenylation, protein content, and trafficking to the plasma membrane (PM) in skeletal muscle, as well as on blood glucose disappearance rate (kITT) after insulin administration. Methods: Rats were surgically thyroidectomized and treated with T-3 (0.3 to 100 mu g/100 g body weight) from 10 minutes to 5 days, and killed thereafter. Sham-operated (SO) rats were used as controls. Total RNA was extracted from the skeletal muscles (soleus [SOL] and extensorum digitalis longus [EDL]) and subjected to Northern blotting analysis using rat GLUT4 cDNA probe. Total protein was extracted and subjected to specific centrifugations for subcellular fractionation, and PM as well as microsomal (M) fractions were subjected to Western blotting analysis, using anti-GLUT4 antiserum as a probe. GLUT4 mRNA polyadenylation was examined by a rapid amplification of cDNA ends-poly(A) test (RACE-PAT). Results: Thyroidectomy reduced skeletal muscle GLUT4 mRNA, mRNA poly(A) tail length, protein content, and trafficking to the PM, as well as the kITT. The acute T-3 treatment rapidly (30 minutes) increased all these parameters compared with Tx rats. The 5-day T-3 treatment increased GLUT4 mRNA and protein expression, and restored GLUT4 trafficking to the PM and kITT to SO values. Conclusions: The results presented here show for the first time that, in parallel to its transcriptional action on the SLC2A4 gene, T-3 exerts a rapid post-transcriptional effect on GLUT4 mRNA polyadenylation, which might increase transcript stability and translation efficiency, leading to the increased GLUT4 content and availability to skeletal muscle, as well as on GLUT4 translocation to the PM, improving the insulin sensitivity, as shown by the kITT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the available public cerebral gene expression image data increasingly grows, the demand for automated methods to analyze such large amount of data also increases. An important study that can be carried out on these data is related to the spatial relationship between gene expressions. Similar spatial density distribution of expression between genes may indicate they are functionally correlated, thus the identification of these similarities is useful in suggesting directions of investigation to discover gene interactions and their correlated functions. In this paper, we describe the use of a high-throughput methodology based on Voronoi diagrams to automatically analyze and search for possible local spatial density relationships between gene expression images. We tested this method using mouse brain section images from the Allen Mouse Brain Atlas public database. This methodology provided measurements able to characterize the similarity of the density distribution between gene expressions and allowed the visualization of the results through networks and Principal Component Analysis (PCA). These visualizations are useful to analyze the similarity level between gene expression patterns, as well as to compare connection patterns between region networks. Some genes were found to have the same type of function and to be near each other in the PCA visualizations. These results suggest cerebral density correlations between gene expressions that could be further explored. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LAURENTINO, G. C., C. UGRINOWITSCH, H. ROSCHEL, M. S. AOKI, A. G. SOARES, M. NEVES JR, A. Y. AIHARA, A. DA ROCHA CORREA FERNANDES, and V. TRICOLI. Strength Training with Blood Flow Restriction Diminishes Myostatin Gene Expression. Med. Sci. Sports Exerc., Vol. 44, No. 3, pp. 406-412, 2012. Purpose: The aim of the study was to determine whether the similar muscle strength and hypertrophy responses observed after either low-intensity resistance exercise associated with moderate blood flow restriction or high-intensity resistance exercise are associated with similar changes in messenger RNA (mRNA) expression of selected genes involved in myostatin (MSTN) signaling. Methods: Twenty-nine physically active male subjects were divided into three groups: low-intensity (20% one-repetition maximum (1RM)) resistance training (LI) (n = 10), low-intensity resistance exercise associated with moderate blood flow restriction (LIR) (n = 10), and high-intensity (80% 1RM) resistance exercise (HI) (n = 9). All of the groups underwent an 8-wk training program. Maximal dynamic knee extension strength (1RM), quadriceps cross-sectional area (CSA), MSTN, follistatin-like related genes (follistatin (FLST), follistatin-like 3 (FLST-3)), activin IIb, growth and differentiation factor-associated serum protein 1 (GASP-1), and MAD-related protein (SMAD-7) mRNA gene expression were assessed before and after training. Results: Knee extension 1RM significantly increased in all groups (LI = 20.7%, LIR = 40.1%, and HI = 36.2%). CSA increased in both the LIR and HI groups (6.3% and 6.1%, respectively). MSTN mRNA expression decreased in the LIR and HI groups (45% and 41%, respectively). There were no significant changes in activin IIb (P > 0.05). FLST and FLST-3 mRNA expression increased in all groups from pre- to posttest (P < 0.001). FLST-3 expression was significantly greater in the HI when compared with the LIR and LI groups at posttest (P = 0.024 and P = 0.018, respectively). GASP-1 and SMAD-7 gene expression significantly increased in both the LIR and HI groups. Conclusions: We concluded that LIR was able to induce gains in 1RM and quadriceps CSA similar to those observed after traditional HI. These responses may be related to the concomitant decrease in MSTN and increase in FLST isoforms, GASP-1, and SMAD-7 mRNA gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several biological events are controlled by Hedgehog (Hh) signaling, including osteoblast phenotype development. This study aimed at evaluating the gene expression profile of human mesenchymal stem cells (hMSCs) treated with the Hh agonist, purmorphamine, focusing on Hh signaling and osteoblast differentiation. hMSCs from bone marrow were cultured in non-osteogenic medium with or without purmorphamine (2 mu M) for periods of up to 14 days. Purmorphamine up-regulated gene expression of the mediators of Hh pathway, SMO, PTCH1, GLI1, and GLI2. The activation of Hh pathway by purmorphamine increased the expression of several genes (e.g., RUNX2 and BMPs) related to osteogenesis. Our results indicated that purmorphamine triggers Hh signaling pathway in hMSCs, inducing an increase in the expression of a set of genes involved in the osteoblast differentiation program. Thus, we conclude that Hh is a crucial pathway in the commitment of undifferentiated cells to the osteoblast lineage. J. Cell. Biochem. 113: 204208, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic administration of glucocorticoids (GC) leads to characteristic features of type 2 diabetes in mammals. The main action of dexamethasone in target cells occurs through modulation of gene expression, although the exact mechanisms are still unknown. We therefore investigated the gene expression profile of pancreatic islets from rats treated with dexamethasone using a cDNA array screening analysis. The expression of selected genes and proteins involved in mitochondria] apoptosis was further analyzed by PCR and immunoblotting. Insulin, triglyceride and free fatty acid plasma levels, as well as glucose-induced insulin secretion, were significantly higher in dexamethasone-treated rats compared with controls. Out of 1176 genes, 60 were up-regulated and 28 were down-regulated by dexamethasone treatment. Some of the modulated genes are involved in apoptosis, stress response, and proliferation pathways. RT-PCR confirmed the cDNA array results for 6 selected genes. Bax alpha protein expression was increased, while Bcl-2 was decreased. In vivo dexamethasone treatment decreased the mitochondrial production of NAD(P)H, and increased ROS production. Concluding, our data indicate that dexamethasone modulates the expression of genes and proteins involved in several pathways of pancreatic-islet cells, and mitochondria dysfunction might be involved in the deleterious effects after long-term GC treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Previous knowledge of cervical lymph node compromise may be crucial to choose the best treatment strategy in oral squamous cell carcinoma (OSCC). Here we propose a set four genes, whose mRNA expression in the primary tumor predicts nodal status in OSCC, excluding tongue. Material and methods. We identified differentially expressed genes in OSCC with and without compromised lymph nodes using Differential Display RT-PCR. Known genes were chosen to be validated by means of Northern blotting or real time RT-PCR (qRT-PCR). Thereafter we constructed a Nodal Index (NI) using discriminant analysis in a learning set of 35 patients, which was further validated in a second independent group of 20 patients. Results. Of the 63 differentially expressed known genes identified comparing three lymph node positive (pN+) and three negative (pN0) primary tumors, 23 were analyzed by Northern analysis or RT-PCR in 49 primary tumors. Six genes confirmed as differentially expressed were used to construct a NI, as the best set predictive of lymph nodal status, with the final result including four genes. The NI was able to correctly classify 32 of 35 patients comprising the learning group (88.6%; p = 0.009). Casein kinase 1alpha1 and scavenger receptor class B, member 2 were found to be up regulated in pN + group in contrast to small proline-rich protein 2B and Ras-GTPase activating protein SH3 domain-binding protein 2 which were upregulated in the pN0 group. We validated further our NI in an independent set of 20 primary tumors, 11 of them pN0 and nine pN+ with an accuracy of 80.0% (p = 0.012). Conclusions. The NI was an independent predictor of compromised lymph nodes, taking into the consideration tumor size and histological grade. The genes identified here that integrate our "Nodal Index" model are predictive of lymph node metastasis in OSCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beyond the physiological and behavioural, differences in appendage morphology between the workers and queens of Apis mellifera are pre-eminent. The hind legs of workers, which are highly specialized pollinators, deserve special attention. The hind tibia of worker has an expanded bristle-free region used for carrying pollen and propolis, the corbicula. In queens this structure is absent. Although the morphological differences are well characterized, the genetic inputs driving the development of this alternative morphology remain unknown. Leg phenotype determination takes place between the fourth and fifth larval instar and herein we show that the morphogenesis is completed at brown-eyed pupa. Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from hind leg imaginal discs of pre-pupal honeybees of both castes we present a list of 200 differentially expressed genes. Notably, there are castes preferentially expressed cuticular protein genes and members of the P450 family. We also provide results of qPCR analyses determining the developmental transcription profiles of eight selected genes, including abdominal-A, distal-less and ultrabithorax (Ubx), whose roles in leg development have been previously demonstrated in other insect models. Ubx expression in workers hind leg is approximately 25 times higher than in queens. Finally, immunohistochemistry assays show that Ubx localization during hind leg development resembles the bristles localization in the tibia/basitarsus of the adult legs in both castes. Our data strongly indicate that the development of the hind legs diphenism characteristic of this corbiculate species is driven by a set of caste-preferentially expressed genes, such as those encoding cuticular protein genes, P450 and Hox proteins, in response to the naturally different diets offered to honeybees during the larval period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) is an atypical neurotransmitter that has been related to the pathophysiology of major depression disorder. Increased plasma NO levels have been reported in depressed and suicidal patients. Inhibition of neuronial nitric oxide synthase (nNOS), on the other hand, induces antidepressant effects in clinical and pre-clinical trials. The mechanisms responsible for the antidepressant-like effects of nNOS inhibitors, however, are not completely understood. In this study, genomic and proteomic analyses were used to investigate the effects of the preferential nNOS inhibitor 7-nitroindazole (7-NI) on changes in global gene and protein expression in the hippocampus of rats submitted to forced swimming test (FST). Chronic treatment (14 days, i.p.) with imipramine (15 mg/kg daily) or 7-NI (60 mg/kg daily) significantly reduced immobility in the FST. Saturation curves for Serial analysis of gene expression libraries showed that the hippocampus of animals submitted to FST presented a lower number of expressed genes compared to non-FST stressed groups. Imipramine, but not 7-NI, reverted this effect. GeneGo analyses revealed that genes related to oxidative phosphorylation, apoptosis and survival controlled by HTR1A signaling and cytoskeleton remodeling controlled by Rho GTPases were significantly changed by FST. 7-NI prevented this effect. In addition, 7-NI treatment changed the expression of genes related to transcription in the cAMP response element-binding pathway. Therefore, this study suggests that changes in oxidative stress and neuroplastic processes could be involved in the antidepressant-like effects induced by nNOS inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To evaluate the effect of vitamin E supplementation on pancreatic gene expression of inflammatory markers in rats with alcoholic chronic pancreatitis. Methods: Wistar rats were divided into 3 groups: control (1), alcoholic chronic pancreatitis without (2) and with (3) vitamin E supplementation. Pancreatitis was induced by a liquid diet containing ethanol, cyclosporin A and cerulein. a-tocopherol content in plasma and liver and pancreas histopathology were analyzed. Gene expression of inflammatory biomarkers was analyzed by the quantitative real-time PCR technique. Results: The animals that received vitamin E supplementation had higher alpha-tocopherol amounts in plasma and liver. The pancreas in Group 1 showed normal histology, whereas in Groups 2 and 3, mild to moderate tissue destruction foci and mononuclear cell infiltration were detected. Real-time PCR analysis showed an increased expression of all genes in Groups 2 and 3 compared to Group 1. Vitamin E supplementation decreased the transcript number of 5 genes (alpha-SMA, COX-2, IL-6, MIP-3 alpha and TNF-alpha) and increased the transcript number of 1 gene (Pap). Conclusion: Vitamin E supplementation had anti-inflammatory and beneficial effects on the pancreatic gene expression of some inflammatory biomarkers in rats with alcoholic chronic pancreatitis, confirming its participation in the inflammatory response mechanisms in the pancreas. Copyright (c) 2012 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selection of reference genes used for data normalization to quantify gene expression by real-time PCR amplifications (qRT-PCR) is crucial for the accuracy of this technique. In spite of this, little information regarding such genes for qRT-PCR is available for gene expression analyses in pathogenic fungi. Thus, we investigated the suitability of eight candidate reference genes in isolates of the human dermatophyte Trichophyton rubrum subjected to several environmental challenges, such as drug exposure, interaction with human nail and skin, and heat stress. The stability of these genes was determined by geNorm, NormFinder and Best-Keeper programs. The gene with the most stable expression in the majority of the conditions tested was rpb2 (DNA-dependent RNA polymerase II), which was validated in three T. rubrum strains. Moreover, the combination of rpb2 and chs1 (chitin synthase) genes provided for the most reliable qRT-PCR data normalization in T. rubrum under a broad range of biological conditions. To the best of our knowledge this is the first report on the selection of reference genes for qRT-PCR data normalization in dermatophytes and the results of these studies should permit further analysis of gene expression under several experimental conditions, with improved accuracy and reliability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schistosoma mansoni is responsible for schistosomiasis, a parasitic disease that affects 200 million people worldwide. Molecular mechanisms of host-parasite interaction are complex and involve a crosstalk between host signals and parasite receptors. TGF-beta signaling pathway has been shown to play an important role in S. mansoni development and embryogenesis. In particular human (h) TGF-beta has been shown to bind to a S. mansoni receptor, transduce a signal that regulates the expression of a schistosome target gene. Here we describe 381 parasite genes whose expression levels are affected by in vitro treatment with hTGF-beta. Among these differentially expressed genes we highlight genes related to morphology, development and cell cycle that could be players of cytokine effects on the parasite. We confirm by qPCR the expression changes detected with microarrays for 5 out of 7 selected genes. We also highlight a set of non-coding RNAs transcribed from the same loci of protein-coding genes that are differentially expressed upon hTCF-beta treatment. These datasets offer potential targets to be explored in order to understand the molecular mechanisms behind the possible role of hTGF-beta effects on parasite biology. (C) 2012 Elsevier B.V. All rights reserved.