904 resultados para Gas Natural
Resumo:
Description based on: 1960.
Resumo:
"July 12, 1988" -- pt.2.
Resumo:
Includes index.
Resumo:
Biofuels and chemicals from biomass mean the gasification of biogenic feedstocks and the synthesis via methanol, dimethylester (DME) or Fischer-Tropsch products. To prevent the sensitive synthesis catalysts from poisoning the syngas must be free of tar and particulates. The trace concentrations of S-, C1-, N-species, alkali and heavy metals must be of the order of a few ppb. Moreover maximum conversion efficiency will be achieved performing the gas cleaning above the synthesis conditions. The concept of an innovative dry HTHP syngas cleaning is presented. Based on the HT particle filtration and suitable sorption and catalysis processes for the relevant contaminants a total concept will be derived, which leads to a syngas quality required for synthesis catalysts in only 2 combined stages. The experimental setup for the HT gas cleaning behind the 60 kWtherm entrained flow gasifier REGA of the institute is described. Results from HT filter experiments in pilot scale are presented. The performance of 2 natural minerals for HC1 and H2S sorption is discussed with respect to the parameters temperature, surface and residence time. Results from lab scale investigations on low temperature tar catalysts' performance (commercial and proprietary development) are discussed finally.
Resumo:
Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria (Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(L-lactic acid) was quantified using the single fiber pullout test. © 2008 American Chemical Society.
Resumo:
Latin America, a region rich in both energy resources and native heritage, faces a rising politico-social confrontation that has been growing for over two decades. While resources like oil and gas are exploited to enhance the state’s economic growth, indigenous groups feel threatened because the operations related to this exploitation are infringing on their homelands. Furthermore, they believe that the potential resource wealth found in these environmentally-sensitive regions is provoking an “intrusion” in their ancestral territory of either government agencies or corporations allowed by governmental decree. Indigenous groups, which have achieved greater political voice over the past decade, are protesting against government violations. These protests have reached the media and received international attention, leading the discourse on topics such as civil and human rights violations. When this happens, the State finds itself “between a rock and a hard place”: In a debate between indigenous groups’ rights and economic sustainability.
Resumo:
Water and gas is a common by - product of the oil production process. Production may be compromised by the precipitation of inorganic salts in both the reservoir and producing well, through scale formation. This precipitation is likely the cause of the formation damage. High temperatures and h igh pressures (HTHP) may favor the precipitation of insoluble salts. The most common types of scale in oil fields are calcium carbonate and calcium sulphate, strontium and barium sulphate. New types of scale formation have attracted special attention such as zinc sulphide and lead. This precipitation may occur in the pores of reservoir rocks, in the production string and in equipment, causing obstructions and consequent production losses. In this study, the influence of well depth on incrustation compositio n was investigated to design removal treatments and assess the behavior of these deposits along the string, through the analysis of pressure and temperature. Scale residues were recovered from the inside of the production string of an oil and gas well duri ng the string removal operation. A total of 10 samples from different depths (15.4 m to 4061.5 m) were obtained. Initially a dissolution test was conducted in weak acid, similar to that used in removal operations with this type of scale formation. Majority composition was defined and confirmed by dissolution tests using X - Ray Fluorescence Spectroscopy (XRF), X - Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) techniques. Residues with distinct characteristics were observed in different proportion s, showing a tendency toward increased and/or decreased mass with depth. In the samples closest to the surface, typical sandstone residues were found, with calcium (45% Ca) as the metal of highest concentration. The obtained results indicate correlations o f the scale types studied with the depth and, consequently, with the thermodynamic conditions of pressure and temperature.
Resumo:
This dissertation deals with the constitutional limits on the exercise of patent rights and its effects on the oil, natural gas and biofuels. Held with the support of ANP / PETROBRAS, It seeks to show how the law will limit the exercise of industrial property, based on a reinterpretation of private law by the constitutional development perspective . Today it is a fact that Petrobras, a Brazilian joint venture, has the latest technology in various sectors of the oil industry, and is one of the highest investments in developing new technologies. The overall objective of this thesis is to establish the relationship between the public interest of the Petroleum Industry, Natural Gas and Biofuels and constitutional limits to the free exercise of patent rights, then confirm or refute our hypothesis that Article 71 on Industrial Property Law is contrary to the existing objectives in Article 3 of the Constitution of the Federative Republic of Brazil. The research aims to examine the relevant aspects of the legal nature attributed to IPGN constitutionally confronting the constitutional limits on the free exercise of patent rights, with the purpose to outline the state of the performance limits in the regulation of the economy, in particular the application of feasibility limitations on the right of property in favor of national interest on the strategic energy industry. The aim is to confront the fundamental rights to property and economic development, against the public interest, limiting these first. As to the objectives, the research will be theoretical and descriptive and harvest of industrial property, respect the possible impact of regulatory standards and limiting the right of ownership in the oil industry. To establish how the state will mitigate the intellectual property right, we discuss, at first, a definition of public interest from the general theory of state and sovereign character in order to establish a new concept of national interest and popular interest, which will in turn the definition of our concept of public interest. In the second phase, will be addressed the issue of industrial property rights and how to will be free exercise thereof, in the constitutional sphere, infra, and demonstrating the use of industrial property rights with examples of market and IPGN . After situating the industrial property rights in the constitution and national legislation, establish their relationship with the national and regional development, will be addressed in this chapter in particular the patent law, as most usual form of intellectual property protection in IPGN. Used a study highlighting the number of patents in the area of the analyzed industry, demonstrating with hard data the importance of a sector for industrial development. The relationship between the social function of intellectual property and the constitutional objective of development was characterized to demonstrate the strategic nature of oil to Brazil in the national and international scene, and put into question the hypothesis of the research which provides that even with large investments the lack of legal certainty in the sector turns out not to have a considerable volume of investment as it could.
Resumo:
In the oil industry, natural gas is a vital component of the world energy supply and an important source of hydrocarbons. It is one of the cleanest, safest and most relevant of all energy sources, and helps to meet the world's growing demand for clean energy in the future. With the growing share of natural gas in the Brazil energy matrix, the main purpose of its use has been the supply of electricity by thermal power generation. In the current production process, as in a Natural Gas Processing Unit (NGPU), natural gas undergoes various separation units aimed at producing liquefied natural gas and fuel gas. The latter should be specified to meet the thermal machines specifications. In the case of remote wells, the process of absorption of heavy components aims the match of fuel gas application and thereby is an alternative to increase the energy matrix. Currently, due to the high demand for this raw gas, research and development techniques aimed at adjusting natural gas are studied. Conventional methods employed today, such as physical absorption, show good results. The objective of this dissertation is to evaluate the removal of heavy components of natural gas by absorption. In this research it was used as the absorbent octyl alcohol (1-octanol). The influence of temperature (5 and 40 °C) and flowrate (25 and 50 ml/min) on the absorption process was studied. Absorption capacity expressed by the amount absorbed and kinetic parameters, expressed by the mass transfer coefficient, were evaluated. As expected from the literature, it was observed that the absorption of heavy hydrocarbon fraction is favored by lowering the temperature. Moreover, both temperature and flowrate favors mass transfer (kinetic effect). The absorption kinetics for removal of heavy components was monitored by chromatographic analysis and the experimental results demonstrated a high percentage of recovery of heavy components. Furthermore, it was observed that the use of octyl alcohol as absorbent was feasible for the requested separation process.
Resumo:
In the oil industry, natural gas is a vital component of the world energy supply and an important source of hydrocarbons. It is one of the cleanest, safest and most relevant of all energy sources, and helps to meet the world's growing demand for clean energy in the future. With the growing share of natural gas in the Brazil energy matrix, the main purpose of its use has been the supply of electricity by thermal power generation. In the current production process, as in a Natural Gas Processing Unit (NGPU), natural gas undergoes various separation units aimed at producing liquefied natural gas and fuel gas. The latter should be specified to meet the thermal machines specifications. In the case of remote wells, the process of absorption of heavy components aims the match of fuel gas application and thereby is an alternative to increase the energy matrix. Currently, due to the high demand for this raw gas, research and development techniques aimed at adjusting natural gas are studied. Conventional methods employed today, such as physical absorption, show good results. The objective of this dissertation is to evaluate the removal of heavy components of natural gas by absorption. In this research it was used as the absorbent octyl alcohol (1-octanol). The influence of temperature (5 and 40 °C) and flowrate (25 and 50 ml/min) on the absorption process was studied. Absorption capacity expressed by the amount absorbed and kinetic parameters, expressed by the mass transfer coefficient, were evaluated. As expected from the literature, it was observed that the absorption of heavy hydrocarbon fraction is favored by lowering the temperature. Moreover, both temperature and flowrate favors mass transfer (kinetic effect). The absorption kinetics for removal of heavy components was monitored by chromatographic analysis and the experimental results demonstrated a high percentage of recovery of heavy components. Furthermore, it was observed that the use of octyl alcohol as absorbent was feasible for the requested separation process.
Resumo:
Acknowledgements The support of the Spanish Government (projects CTQ2014-52956-C3-2-R and CTQ2014-52956-C3-3-R) is recognized.
Resumo:
The authors would like to thank the leadership of the Deep Ocean Stewardship Initiative (DOSI), including Lisa Levin, Maria Baker, and Kristina Gjerde, for their support in developing this review. This work evolved from a meeting of the DOSI Oil and Gas working group supported by the J.M. Kaplan Fund, and associated with the Deep-Sea Biology Symposium in Aveiro, Portugal in September 2015. The members of the Oil and Gas working group that contributed to our discussions at that meeting or through the listserve are acknowledged for their contributions to this work. We would also like to thank the three reviewers and the editor who provided valuable comments and insight into the work presented here. DJ and AD were supported by funding from the European Union's Horizon 2020 research and innovation programme under the MERCES (Marine Ecosystem Restoration in Changing European Seas) project, grant agreement No 689518. AB was supported by CNPq grants 301412/2013-8 and 200504/2015-0. LH acknowledges funding provided by a Natural Environment Research Council grant (NE/L008181/1). This output reflects only the authors' views and the funders cannot be held responsible for any use that may be made of the information contained therein.
Resumo:
Acknowledgements. We would like to acknowledge the manufacturers of the inner toroid: Mark Bentley and Steve Howarth from the University of York, Dept. of Biology, mechanical and electronics workshops respectively. Furthermore, we would like to acknowledge the Forestry Commission for access and aid at Wheldrake Forest, Mike Bailey and Natural Resources Wales for access and assistance at Cors Fochno, and Norrie Russell and the Royal Society for the Protection of Birds for access and aid at Forsinard. We would also like to thank Graham Hambley, James Robinson, and Elizabeth Donkin for equipment preparation and sampling. Phil Ineson is thanked for the loan of essential equipment, site suggestions, and accessible power supply. Funding was provided by the University of York, Dept. of Biology, and by a grant to YAT by the UK Natural Environment Research Council (NE/H01182X/1).
Resumo:
A large increase in natural gas production occurred in western Colorado’s Piceance basin in the mid- to late-2000s, generating a surge in population, economic activity, and heavy truck traffic in this rural region. We describe the fiscal effects related to this development for two county governments: Garfield and Rio Blanco, and two city governments: Grand Junction and Rifle. Counties maintain rural road networks in Colorado, and Garfield County’s ability to fashion agreements with operators to repair roads damaged during operations helped prevent the types of large new costs seen in Rio Blanco County, a neighboring county with less government capacity and where such agreements were not made. Rifle and Grand Junction experienced substantial oil- and gas-driven population growth, with greater challenges in the smaller, more isolated, and less economically diverse city of Rifle. Lessons from this case study include the value of crafting road maintenance agreements, fiscal risks for small and geographically isolated communities experiencing rapid population growth, challenges associated with limited infrastructure, and the desirability of flexibility in the allocation of oil- and gas-related revenue.