987 resultados para GLYCATION END-PRODUCTS
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Química
Resumo:
OBJECTIVE: To assess factors associated with the establishment of permanent vascular access for patients with end-stage renal disease. METHODS: Cross-sectional study conducted in a nationally representative sample of Brazilian end-stage renal disease patients in dialysis and transplant centers during 2007. The sample comprised only patients who received hemodialysis as a primary therapy modality and reported the type of vascular access for their primary hemodialysis treatment (N=2,276). Data were from the TRS Project - "Economic and Epidemiologic Evaluation of Modalities of Renal Replacement Therapy in Brazil". Multiple logistic regression analysis was used to assess factors associated with the establishment of permanent vascular access in these patients. RESULTS: About 30% of the patients studied had an arteriovenous vascular access. The following factors were associated with a lower likelihood of having an arteriovenous vascular access as a primary type of access: time of hemodialysis start since the diagnosis of chronic renal failure < 1 year; shorter dialysis therapy; having no private health insurance; living in the central-western, northeastern and southeastern regions of Brazil; and living in the northern region plus having no private health insurance. In the final model there was found a positive association between the outcome and pre-dialysis care and no were association with socioeconomic and comorbidity variables. CONCLUSIONS: The study results showed that the focus should on pre-dialysis care to increase the establishment of an arteriovenous vascular access before starting hemodialysis in Brazil.
Resumo:
The present work describes the development of an analytical method for the determination of methiocarb and its degradation products (methiocarb sulfoxide and methiocarb sulfone) in banana samples, using the QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure followed by liquid chromatography coupled to photodiode array detector (LCPAD). Calibration curves were linear in the range of 0.5−10 mg L−1 for all compounds studied. The average recoveries, measured at 0.1 mg kg−1 wet weight, were 92.0 (RSD = 1.8%, n = 3), 84.0 (RSD = 3.9%, n = 3), and 95.2% (RSD = 1.9%, n = 3) for methiocarb sulfoxide, methiocarb sulfone, and methiocarb, respectively. Banana samples treated with methiocarb were collected from an experimental field. The developed method was applied to the analysis of 24 samples (peel and pulp) and to 5 banana pulp samples. Generally, the highest levels were found for methiocarb sulfoxide and methiocarb. Methiocarb sulfone levels were below the limit of quantification, except in one sample (not detected).
Resumo:
In this study, efforts were made in order to put forward an integrated recycling approach for the thermoset based glass fibre reinforced polymer (GPRP) rejects derived from the pultrusion manufacturing industry. Both the recycling process and the development of a new cost-effective end-use application for the recyclates were considered. For this purpose, i) among the several available recycling techniques for thermoset based composite materials, the most suitable one for the envisaged application was selected (mechanical recycling); and ii) an experimental work was carried out in order to assess the added-value of the obtained recyclates as aggregates and reinforcement replacements into concrete-polymer composite materials. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified concrete-polymer composites with regard to unmodified materials. In the mix design process of the new GFRP waste based composite material, the recyclate content and size grade, and the effect of the incorporation of an adhesion promoter were considered as material factors and systematically tested between reasonable ranges. The optimization process of the modified formulations was supported by the Fuzzy Boolean Nets methodology, which allowed finding the best balance between material parameters that maximizes both flexural and compressive strengths of final composite. Comparing to related end-use applications of GFRP wastes in cementitious based concrete materials, the proposed solution overcome some of the problems found, namely the possible incompatibilities arisen from alkalis-silica reaction and the decrease in the mechanical properties due to high water-cement ratio required to achieve the desirable workability. Obtained results were very promising towards a global cost-effective waste management solution for GFRP industrial wastes and end-of-life products that will lead to a more sustainable composite materials industry.
Resumo:
Projeto de Intervenção apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Educação Especial, especialidade em Multideficiência
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica
Resumo:
"Many-core” systems based on the Network-on- Chip (NoC) architecture have brought into the fore-front various opportunities and challenges for the deployment of real-time systems. Such real-time systems need timing guarantees to be fulfilled. Therefore, calculating upper-bounds on the end-to-end communication delay between system components is of primary interest. In this work, we identify the limitations of an existing approach proposed by [1] and propose different techniques to overcome these limitations.
Resumo:
When timber elements in heritage buildings are moderately degraded by fungi and assuming underlying moisture problems have been solved, two actions can be taken: i) use a biocide to stop fungal activity; ii) consolidate the degraded elements so that the timber keeps on fulfilling its structural and decorative functions. The aim of this work is to investigate the mechanical performance of maritime pine wood degraded by fungi after being treated with a biocide followed by impregnation with a polymer product. Three commercially available products were used: a boron water-based biocide, an acrylic consolidant and an epoxy-based consolidant. Treated and consolidated specimens were subjected to mechanical tests: axial compression test (NP 618), static surface hardness (ISO 3350) and bending test (NP 619). Sets of replicates were subjected to an evaporation ageing test (EN 73) after application of the products and also tested for mechanical behaviour. An increase in mechanical strength was observed for both consolidants with no significant influence from the previous use of biocide product. The specimens subjected to ageing showed a slightly better general mechanical performance.
Resumo:
Cost-effective glass-reinforced thermoplastic matri x towpregs produced by a powder coating line were used to manufacture composite pipes by fi lament winding. A conventional 6 axes filament-winding equipment was adapted for processi ng such structures. The influence of the filament winding speed and mandrel temperature on t he composite final properties was studied in the present work. An optimized processin g window was established by comparing the composite theoretical expected mechanical prope rties with the experimentally obtained ones. The final properties determined on the produc ed pipes and structures and the technological changes introduced to the conventiona l filament-winding equipment will be presented and discussed. Besides the processing des cription and conditions, it will be presented the relationship between processing condi tions and mechanical properties.
Resumo:
A preservação e proteção do ambiente são, cada vez mais, de elevada importância. Para fazer face ao grande consumo de bens, que se verifica nos dias de hoje, a atividade industrial tem aumentado, assim como os resíduos, as emissões, os efluentes e ainda os resíduos de produtos em fim de vida, provocando impactes no meio ambiente, com alterações significativas que se manifestam a nível das condições climáticas e, consequentemente, afetam a qualidade de vida das pessoas a sua segurança e saúde, bem como a fauna e a flora. O presente estudo tem por objetivo identificar as principais atividades desenvolvidas na indústria metalomecânica, identificar os principais aspetos e impactes ambientais, bem como os perigos e riscos profissionais associados às atividades deste setor, identificar a principal legislação em vigor em matéria ambiental e de segurança e saúde no trabalho, selecionar e analisar metodologias de avaliação de riscos ambientais e profissionais e aplicar estas metodologias num estudo de caso numa empresa metalomecânica, tendo em vista comparar os resultados das avaliações, por duas metodologias diferentes, dos riscos ambientais e profissionais e daí tirar conclusões. A vantagem da aplicação de duas metodologias diferentes na avaliação de riscos ambientais e profissionais é a de poder aferir se os resultados são idênticos independentemente da metodologia utilizada. Após a aplicação das duas metodologias, com critérios de avaliação diferentes, selecionadas para avaliação dos riscos ambientais, concluiu-se que as metodologias apresentam resultados semelhantes, o mesmo aconteceu com as duas metodologias, com critérios de avaliação, também, diferentes, selecionadas para avaliação dos riscos profissionais em que as duas metodologias apresentaram os mesmos resultados.
Resumo:
Mestrado em Contabilidade e Gestão das Instituições Financeiras
Resumo:
Mestrado em Engenharia Química - Ramo Optimização Energética na Indústria Química
Resumo:
Mestrado em Engenharia Mecânica - Gestão de Processos e Operações
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
The development and applications of thermoset polymeric composites, namely fiber reinforced polymers (FRP), have shifted in the last decades more and more into the mass market [1]. Production and consume have increased tremendously mainly for the construction, transportation and automobile sectors [2, 3]. Although the many successful uses of thermoset composite materials, recycling process of byproducts and end of lifecycle products constitutes a more difficult issue. The perceived lack of recyclability of composite materials is now increasingly important and seen as a key barrier to the development or even continued used of these materials in some markets.