878 resultados para Fate and fatalism.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many physiological and pathological processes are mediated by the activity of proteins assembled in homo and/or hetero-oligomers. The correct recognition and association of these proteins into a functional complex is a key step determining the fate of the whole pathway. This has led to an increasing interest in selecting molecules able to modulate/inhibit these protein-protein interactions. In particular, our research was focused on Heat Shock Protein 90 (Hsp90), responsible for the activation and maturation and disposition of many client proteins [1], [2] [3]. Circular Dichroism (CD) spectroscopy, Surface Plasmon Resonance (SPR) and Affinity Capillary Electrophoresis (ACE) were used to characterize the Hsp90 target and, furthermore, its inhibition process via C-terminal domain driven by the small molecule Coumermycin A1. Circular Dichroism was used as powerful technique to characterize Hsp90 and its co-chaperone Hop in solution for secondary structure content, stability to different pHs, temperatures and solvents. Furthermore, CD was used to characterize ATP but, unfortunately, we were not able to monitor an interaction between ATP and Hsp90. The utility of SPR technology, on the other hand, arises from the possibility of immobilizing the protein on a chip through its N-terminal domain to later study the interaction with small molecules able to disrupt the Hsp90 dimerization on the C-terminal domain. The protein was attached on SPR chip using the “amine coupling” chemistry so that the C-terminal domain was free to interact with Coumermycin A1. The goal of the experiment was achieved by testing a range of concentrations of the small molecule Coumermycin A1. Despite to the large difference in the molecular weight of the protein (90KDa) and the drug (1110.08 Da), we were able to calculate the affinity constant of the interaction that was found to be 11.2 µm. In order to confirm the binding constant calculated for the Hsp90 on the chip, we decided to use Capillary Electrophoresis to test the Coumermycin binding to Hsp90. First, this technique was conveniently used to characterize the Hsp90 sample in terms of composition and purity. The experimental conditions were settled on two different systems, the bared fused silica and the PVA-coated capillary. We were able to characterize the Hsp90 sample in both systems. Furthermore, we employed an application of capillary electrophoresis, the Affinity Capillary Electrophoresis (ACE), to measure and confirm the binding constant calculated for Coumermycin on Optical Biosensor. We found a KD = 19.45 µM. This result compares favorably with the KD previously obtained on biosensor. This is a promising result for the use of our novel approach to screen new potential inhibitors of Hsp90 C-terminal domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitochondria are inherited maternally in most metazoans. However, in some bivalves, two mitochondrial lineages are present: one transmitted through eggs (F), the other through sperm (M). This is called Doubly Uniparental Inheritance (DUI). During male embryo development, spermatozoon mitochondria aggregate and end up in the primordial germ cells, while they are dispersed in female embryos. The molecular mechanisms of segregation patterns are still unknown. In the DUI species Ruditapes philippinarum, I examined sperm mitochondria distribution by MitoTracker, microtubule staining and TEM, and I localized germ line determinants with immunocytochemical analysis. I also analyzed the gonad transcriptome, searching for genes involved in reproduction and sex determination. Moreover, I analyzed an M-type specific open reading frame that could be responsible for maintenance/degradation of M mitochondria during embryo development. These transcripts were also localized in tissues using in situ hybridization. As in Mytilus, two distribution patterns of M mitochondria were detected in R. philippinarum, supporting that they are related to DUI. Moreover, the first division midbody concurs in positioning aggregated M mitochondria on the animal-vegetal axis of the male embryo: in organisms with spiral segmentation this zone is not involved in further cleavages, so aggregation is maintained. Moreover, sperm mitochondria reach the same embryonic area where germ plasm is transferred, suggesting their contribution in male germ line formation. The finding of reproduction and ubiquitination transcripts led to formulate a model in which ubiquitination genes stored in female oocytes during gametogenesis would activate sex-gene expression in the early embryonic developmental stages (preformation). Only gametogenetic cells were labeled by in situ hybridization, proving their specific transcription in developing gametes. Other than having a role in sex determination, some ubiquination factors could also be involved in mitochondrial inheritance, and their differential expression could be responsible for the different fate of sperm mitochondria in the two sexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon fluxes and allocation pattern, and their relationship with the main environmental and physiological parameters, were studied in an apple orchard for one year (2010). I combined three widely used methods: eddy covariance, soil respiration and biometric measurements, and I applied a measurement protocol allowing a cross-check between C fluxes estimated using different methods. I attributed NPP components to standing biomass increment, detritus cycle and lateral export. The influence of environmental and physiological parameters on NEE, GPP and Reco was analyzed with a multiple regression model approach. I found that both NEP and GPP of the apple orchard were of similar magnitude to those of forests growing in similar climate conditions, while large differences occurred in the allocation pattern and in the fate of produced biomass. Apple production accounted for 49% of annual NPP, organic material (leaves, fine root litter, pruned wood and early fruit drop) contributing to detritus cycle was 46%, and only 5% went to standing biomass increment. The carbon use efficiency (CUE), with an annual average of 0.68 ± 0.10, was higher than the previously suggested constant values of 0.47-0.50. Light and leaf area index had the strongest influence on both NEE and GPP. On a diurnal basis, NEE and GPP reached their peak approximately at noon, while they appeared to be limited by high values of VPD and air temperature in the afternoon. The proposed models can be used to explain and simulate current relations between carbon fluxes and environmental parameters at daily and yearly time scale. On average, the annual NEP balanced the carbon annually exported with the harvested apples. These data support the hypothesis of a minimal or null impact of the apple orchard ecosystem on net C emission to the atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanotechnology entails the manufacturing and manipulation of matter at length scales ranging from single atoms to micron-sized objects. The ability to address properties on the biologically-relevant nanometer scale has made nanotechnology attractive for Nanomedicine. This is perceived as a great opportunity in healthcare especially in diagnostics, therapeutics and more in general to develop personalized medicine. Nanomedicine has the potential to enable early detection and prevention, and to improve diagnosis, mass screening, treatment and follow-up of many diseases. From the biological standpoint, nanomaterials match the typical size of naturally occurring functional units or components of living organisms and, for this reason, enable more effective interaction with biological systems. Nanomaterials have the potential to influence the functionality and cell fate in the regeneration of organs and tissues. To this aim, nanotechnology provides an arsenal of techniques for intervening, fabricate, and modulate the environment where cells live and function. Unconventional micro- and nano-fabrication techniques allow patterning biomolecules and biocompatible materials down to the level of a few nanometer feature size. Patterning is not simply a deterministic placement of a material; in a more extended acception it allows a controlled fabrication of structures and gradients of different nature. Gradients are emerging as one of the key factors guiding cell adhesion, proliferation, migration and even differentiation in the case of stem cells. The main goal of this thesis has been to devise a nanotechnology-based strategy and tools to spatially and temporally control biologically-relevant phenomena in-vitro which are important in some fields of medical research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In spite of the higher toxicity of oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) than of their parent-PAHs, there are only a few studies of the concentrations, composition pattern, sources and fate of OPAHs in soil, the presumably major environmental sink of OPAHs. This is related to the fact that there are only few available methods to measure OPAHs together with PAHs in soil. rnThe objectives of my thesis were to (i) develop a GC/MS-based method to measure OPAHs and their parent-PAHs in soils of different properties and pollution levels, (ii) apply the method to soils from Uzbekistan and Slovakia and (iii) investigate into the fate of OPAHs, particularly their vertical transport in soilrnI optimized and fully evaluated an analytical method based on pressurized liquid extraction, silica gel column chromatographic fractionation of extracted compounds into alkyl-/parent-PAH and OPAH fractions, silylation of hydroxyl-/carboxyl-OPAHs with N,O-bis(trimethylsilyl)trifluoracetamide and GC/MS quantification of the target compounds. The method was targeted at 34 alkyl-/parent-PAHs, 7 carbonyl-OPAHs and 19 hydroxyl-/carboxyl-OPAHs. I applied the method to 11 soils from each of the Angren industrial region (which hosts a coal mine, power plant, rubber factory and gold refinery) in Uzbekistan and in the city of Bratislava, the densely populated capital of Slovakia.rnRecoveries of five carbonyl-OPAHs in spike experiments ranged between 78-97% (relative standard deviation, RSD, 5-12%), while 1,2-acenaphthenequinone and 1,4-naphtho-quinone had recoveries between 34-44%% (RSD, 19-28%). Five spiked hydroxyl-/carboxyl-OPAHs showed recoveries between 36-70% (RSD, 13-46%), while others showed recoveries <10% or were completely lost. With the optimized method, I determined, on average, 103% of the alkyl-/parent-PAH concentrations in a certified reference material.rnThe ∑OPAHs concentrations in surface soil ranged 62-2692 ng g-1 and those of ∑alkyl-/parent-PAHs was 842-244870 ng g-1. The carbonyl-OPAHs had higher concentrations than the hydroxyl-/carboxyl-OPAHs. The most abundant carbonyl-OPAHs were consistently 9-fluorenone (9-FLO), 9,10-anthraquinone (9,10-ANQ), 1-indanone (1-INDA) and benzo[a]anthracene-7,12-dione (7,12-B(A)A) and the most abundant hydroxyl-/carboxyl-OPAH was 2-hydroxybenzaldehyde. The concentrations of carbonyl-OPAHs were frequently higher than those of their parent-PAHs (e.g., 9-FLO/fluorene >100 near a rubber factory in Angren). The concentrations of OPAHs like those of their alkyl-/parent-PAHs were higher at locations closer to point sources and the OPAH and PAH concentrations were correlated suggesting that both compound classes originated from the same sources. Only for 1-INDA and 2-biphenylcarboxaldehyde sources other than combustion seemed to dominate. Like those of the alkyl-/parent-PAHs, OPAH concentrations were higher in topsoils than subsoils. Evidence of higher mobility of OPAHs than their parent-PAHs was provided by greater subsoil:topsoil concentration ratios of carbonyl-OPAHs (0.41-0.82) than their parent-PAHs (0.41-0.63) in Uzbekistan. This was further backed by the consistently higher contribution of more soluble 9-FLO and 1-INDA to the ∑carbonyl-OPAHs in subsoil than topsoil at the expense of 9,10-ANQ, 7,12-B(A)A and higher OPAH/parent-PAH concentration ratios in subsoil than topsoil in Bratislava.rnWith this thesis, I contribute a suitable method to determine a large number of OPAHs and PAHs in soil. My results demonstrate that carbonyl-OPAHs are more abundant than hydroxyl-/carboxyl-OPAHs and OPAH concentrations are frequently higher than parent-PAH concentrations. Furthermore, there are indications that OPAHs are more mobile in soil than PAHs. This calls for appropriate legal regulation of OPAH concentrations in soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CYLD is a deubiquitinating enzyme, which negatively regulates NF-κB signaling by removing Lys63-linked polyubiquitin chains from its substrates. In mice, there are two variants of CYLD: full-length CYLD (FL-CYLD) and its short splice variant sCYLD. sCYLD lacks the NEMO and TRAF2 binding sites and CYLDex7/8 mice, which have been generated in our laboratory, overexpress sCYLD in the absence of the full length transcript. In this thesis, we show that bone marrow-derived macrophages (BMDCs) overexpressing sCYLD display a hyperactive phenotype. They have increased levels of the inflammatory cytokines IL-6 and TNFα, have exaggerated stimulatory capacity and fail to induce tolerance in in vivo experiments. CYLDex7/8 BMDCs have increased levels of nuclear Bcl-3, which we could show to be directly induced by sCYLD expression. NF-κB signaling was markedly upregulated in CYLDex7/8 BMDCs.rnBcl-3 overexpressing BMDCs with normal CYLD expression, however, were not hyperactive, suggesting that Bcl-3 overexpression is not sufficient for causing the observed phenotype. Taken together we propose a model in which the exclusive overexpression of sCYLD with high nuclear levels of Bcl-3 in BMDCs is accompanied by an increased NF-κB activation, resulting in a hyperactive phenotype.rnWe further analyzed macrophages overexpressing sCYLD using the LysMcre CyldFL/FL strain, but could not detect differences in activation marker expression, cytokine secretion or iNOS production. LysMcre CyldFL/FL mice immunized with MOG35-55 peptide showed a more severe course of experimental autoimmune encephalomyelitis (EAE), which could not be explained by enhanced levels of MHC class II on CNS-resident macrophages and microglia or increased T cell infiltration.rnMice overexpressing Bcl-3 in T cells develop spontaneous colitis. They have less peripheral memory/effector T cells and less Th1 cells, whereas Th17 numbers are normal. Naïve T cells overexpressing Bcl-3 show defects in in vitro differentiation to the Th1 or Th17 fate. CD4+ T cells overexpressing Bcl-3 show enhanced survival capacity in in vitro culture, but have a defect in proliferative capacity when stimulated in vitro or when adoptively transferred into lymphopenic hosts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent availability of multi-wavelength data revealed the presence of large reservoirs of warm and cold gas and dust in the innermost regions of the majority of massive elliptical galaxies. To prove an internal origin of cold and warm gas, the investigation of the spatially distributed cooling process which occurs because of non-linear density perturbations and subsequent thermal instabilities is of crucial importance. The first goal of this work of thesis is to investigate the internal origin of warm and cold phases. Numerical simulations are the powerful tool of analysis. The way in which a spatially distributed cooling process originates has been examined and the off-centre amount of gas mass which cools when different and differently characterized AGN feedback mechanisms operate has been quantified. This thesis demonstrates that the aforementioned non-linear density perturbations originate and develop from AGN feedback mechanisms in a natural fashion. An internal origin of the warm phase from the once hot gas is shown to be possible. Computed velocity dispersions of ionized and hot gas are similar. The cold gas as well can originate from the cooling process: indeed, it has been estimated that the surrounding stellar radiation, which is one of the most feasible sources of ionization of the warm gas, does not manage to keep ionized all the gas at 10^4 K. Therefore, cooled gas does undergo a further cooling which can lead the warm phase to lower temperatures. However, the gas which has cooled from the hot phase is expected to be dustless; nonetheless, a large fraction of early type galaxies has detectable dust in their cores, both concentrated in filamentary and disky structures and spread over larger regions. Therefore a regularly rotating disk of cold and dusty gas has been included in the simulations. A new quantitative investigation of the spatially distributed cooling process has therefore been essential: the contribution of the included amount of dust which is embedded in the cold gas does have a role in promoting and enhancing the cooling. The fate of dust which was at first embedded in cold gas has been investigated. The role of AGN feedback mechanisms in dragging (if able) cold and dusty gas from the core of massive ellipticals up to large radii has been studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to represent the transport and fate of an oil slick at the sea surface is a formidable task. By using an accurate numerical representation of oil evolution and movement in seawater, the possibility to asses and reduce the oil-spill pollution risk can be greatly improved. The blowing of the wind on the sea surface generates ocean waves, which give rise to transport of pollutants by wave-induced velocities that are known as Stokes’ Drift velocities. The Stokes’ Drift transport associated to a random gravity wave field is a function of the wave Energy Spectra that statistically fully describe it and that can be provided by a wave numerical model. Therefore, in order to perform an accurate numerical simulation of the oil motion in seawater, a coupling of the oil-spill model with a wave forecasting model is needed. In this Thesis work, the coupling of the MEDSLIK-II oil-spill numerical model with the SWAN wind-wave numerical model has been performed and tested. In order to improve the knowledge of the wind-wave model and its numerical performances, a preliminary sensitivity study to different SWAN model configuration has been carried out. The SWAN model results have been compared with the ISPRA directional buoys located at Venezia, Ancona and Monopoli and the best model settings have been detected. Then, high resolution currents provided by a relocatable model (SURF) have been used to force both the wave and the oil-spill models and its coupling with the SWAN model has been tested. The trajectories of four drifters have been simulated by using JONSWAP parametric spectra or SWAN directional-frequency energy output spectra and results have been compared with the real paths traveled by the drifters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Verwendung von Metallen zur Entwicklung der heutigen fortschrittlichen technologischenrnGesellschaft lässt auf eine lange Geschichte zurück blicken. Im Zuge des letzten Jahrhundertsrnwurde realisiert, dass die chemischen und radioaktiven Eigenschaften von Metallen einernernsthafte Bedrohung für die Menschheit darstellen können. In der modernen Geochemie ist esrnallgemein akzeptiert, dass die spezifischen physikochemische Formen entscheidender sind, alsrndas Verhalten der gesamten Konzentration der Spurenmetalle in der Umwelt. Die Definition derrnArtbildung kann grob als die Identifizierung und Quantifizierung der verschiedenen Formen oderrnPhasen für ein Element zugeordnet werden. Die chemische Extraktion ist eine gemeinsamernSpeziierungstechnik bei der die Fraktionierung des Gesamtmetallgehaltes zur Analyse der Quellernanthropogener Metallkontamination und zur Vorhersage der Bioverfügbarkeit von verschiedenenrnMetallformen dient. Die Philosophie der partiellen und sequenziellen Extraktionsmethodernbesteht darin, dass insbesondere das Extraktionsmittel phasenspezifisch unter chemischemrnAngriff unterschiedlicher Mischungsformen steht. Die Speziation von Metall ist wichtig bei derrnBestimmung der Toxizität, Mobilität, Bioverfügbarkeit des Metalls und damit ihr Schicksal inrnder Umwelt und biologischem System. Die Artenbildungsanalyse kann für das Verständnis derrnAuswirkung auf die menschliche Gesundheit und bei ökologischen Risiken durch diernQuantifizierung von Metallspezies bei einem Untersuchungs-standort angewendet werden undrnanschließend können Sanierungsstrategien für den Standort umgesetzt werden. Mit Hilfe derrnSpezifizierung wurden Arsen und Kupfer in landwirtschaftlichem Kalkdünger und Thallium inrnkontaminierten Böden untersucht und in den folgenden Abschnitten im Einzelnen dargestellt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the changes in soil fertility due to the different aggregate breakdown mechanisms and it analyses their relationships in different soil-plant systems, using physical aggregates behavior and organic matter (OM) changes as indicators. Three case studies were investigated: i) an organic agricultural soil, where a combined method, aimed to couple aggregate stability to nutrients loss, were tested; ii) a soil biosequence, where OM chemical characterisation and fractionation of aggregates on the basis of their physical behaviour were coupled and iii) a soils sequence in different phytoclimatic conditions, where isotopic C signature of separated aggregates was analysed. In agricultural soils the proposed combined method allows to identify that the severity of aggregate breakdown affected the quantity of nutrients lost more than nutrients availability, and that P, K and Mg were the most susceptible elements to water abrasion, while C and N were mainly susceptible to wetting. In the studied Chestnut-Douglas fir biosequence, OM chemical properties affected the relative importance of OM direct and indirect mechanisms (i.e., organic and organic-metallic cements, respectively) involved in aggregate stability and nutrient losses: under Douglas fir, high presence of carboxylate groups enhanced OM-metal interactions and stabilised aggregates; whereas under Chestnut, OM directly acted and fresh, more C-rich OM was preserved. OM direct mechanism seemed to be more efficient in C preservation in aggregates. The 13C natural abundance approach showed that, according to phytoclimatic conditions, stable macroaggregates can form both around partially decomposed OM and by organic-mineral interactions. In topsoils, aggregate resistance enhanced 13C-rich OM preservation, but in subsoils C preservation was due to other mechanisms, likely OM-mineral interactions. The proposed combined approach seems to be useful in the understanding of C and nutrients fate relates to water stresses, and in future research it could provide new insights into the complexity of soil biophysical processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

What is the intracellular fate of nanoparticles (NPs) taken up by the cells? This question has been investigated for polystyrene NPs of different sizes with a set of molecular biological and biophysical techniques.rnTwo sets of fluorescent NPs, cationic and non-ionic, were synthesized with three different polymerization techniques. Non-ionic particles (132 – 846 nm) were synthesized with dispersion polymerization in an ethanol/water solution. Cationic NPs with 120 nm were synthesized by miniemulsion polymerization Particles with 208, 267 and 603 nm were produced by seeding the 120 nm particle obtained by miniemulsion polymerization with drop-wise added monomer and polymerization of such. The colloidal characterization of all particles showed a comparable amount of the surface groups. In addition, particles were characterized with regard to their size, morphology, solid content, amount of incorporated fluorescent dye and zeta potential. The fluorescent intensities of all particles were measured by fluorescence spectroscopy for calibration in further cellular experiments. rnThe uptake of the NPs to HeLa cells after 1 – 24 h revealed a much higher uptake of cationic NPs in comparison to non-ionic NPs. If the same amount of NPs with different sizes is introduced to the cell, a different amount of particles is present in the cell medium, which complicates a comparison of the uptake. The same conclusion is valid for the particles’ overall surface area. Therefore, HeLa cells were incubated with the same concentration, amount and surface area of NPs. It was found that with the same concentration always the same polymer amount is taking up by cells. However, the amount of particles taken up decreases for the biggest. A correlation to the surface area could not be found. We conclude that particles are endocytosed by an excavator-shovel like mechanism, which does not distinguish between different sizes, but is only dependent on the volume that is taken up. For the decreased amount of large particles, an overload of this mechanism was assumed, which leads to a decrease in the uptake. rnThe participation of specific endocytotic processes has been determined by the use of pharmacological inhibitors, immunocytological staining and immunofluorescence. The uptake of NPs into the endo-lysosomal machinery is dominated by a caveolin-mediated endocytosis. Other pathways, which include macropinocytosis and a dynamin-dependent mechanism but exclude clathrin mediated endocytosis, also occur as competing processes. All particles can be found to some extent in early endosomes, but only bigger particles were proven to localize in late endosomes. No particles were found in lysosomes; at least not in lysosomes that are labeled with Lamp1 and cathepsin D. However, based on the character of the performed experiment, a localization of particles in lysosomes cannot be excluded.rnDuring their ripening process, vesicles undergo a gradual acidification from early over late endosomes to lysosomes. It is hypothesized that NPs in endo-lysosomal compartments experience the same change in pH value. To probe the environmental pH of NPs after endocytosis, the pH-sensitive dye SNARF-4F was grafted onto amino functionalized polystyrene NPs. The pH value is a ratio function of the two emission wavelengths of the protonated and deprotonated form of the dye and is hence independent of concentration changes. The particles were synthesized by the aforementioned miniemulsion polymerization with the addition of the amino functionalized copolymer AEMH. The immobilization of SNARF-4F was performed by an EDC-coupling reaction. The amount of physically adsorbed dye in comparison to covalently bonded dye was 15% as determined by precipitation of the NPs in methanol, which is a very good solvent for SNARF-4F. To determine influences of cellular proteins on the fluorescence properties, a intracellular calibration fit was established with platereader measurements and cLSM imaging by the cell-penetrable SNARF-4F AM ester. Ionophores equilibrated the extracellular and intracellular pH.rnSNARF-4F NPs were taken up well by HeLa cells and showed no toxic effects. The pH environment of SNARF-4F NPs has been qualitatively imaged as a movie over a time period up to 1 h in pseudo-colors by a self-written automated batch program. Quantification revealed an acidification process until pH value of 4.5 over 24 h, which is much slower than the transport of nutrients to lysosomes. NPs are present in early endosomes after min. 1 h, in late endosomes at approx. 8 h and end up in vesicles with a pH value typical for lysosomes after > 24 h. We therefore assume that NPs bear a unique endocytotic mechanism, at least with regards to the kinetic involvedrn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gut microbiota (GM) is essential for human health and contributes to several diseases; indeed it can be considered an extension of the self and, together with the genetic makeup, determines the physiology of an organism. In this thesis has been studied the peripheral immune system reconstitution in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (aHSCT) in the early phase; in parallel, have been also explored the gut microbiota variations as one of the of primary factors in governing the fate of the immunological recovery, predisposing or protecting from complications such as the onset of acute graft-versus-host disease (GvHD). Has been demonstrated, to our knowledge for the first time, that aHSCT in pediatric patients is associated to a profound modification of the GM ecosystem with a disruption of its mutualistic asset. aGvHD and non-aGvHD subjects showed differences in the process of GM recovery, in members abundance of the phylum Bacteroidetes, and in propionate fecal concentration; the latter are higher in the pre-HSCT composition of non-GvHD subjects than GvHD ones. Short-chain fatty acids (SCFAs), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients and distribute systemically from the gut to blood. For this reason, has been studied their effect in vitro on human DCs, the key regulators of our immune system and the main player of aGvHD onset. Has been observed that propionate and, particularly, butyrate show a strong and direct immunomodulatory activity on DCs reducing inflammatory markers such as chemokines and interleukins. This study, with the needed caution, suggests that the pre-existing GM structure can be protective against aGvHD onset, exerting its protective role through SCFAs. They, indeed, may regulate cell traffic within secondary lymphoid tissues, influence T cell development during antigen recognition, and, thus, directly shape the immune system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear medicine imaging techniques such as PET are of increasing relevance in pharmaceutical research being valuable (pre)clinical tools to non-invasively assess drug performance in vivo. Therapeutic drugs, e.g. chemotherapeutics, often suffer from a poor balance between their efficacy and toxicity. Here, polymer based drug delivery systems can modulate the pharmacokinetics of low Mw therapeutics (prolonging blood circulation time, reducing toxic side effects, increasing target site accumulation) and therefore leading to a more efficient therapy. In this regard, poly-N-(2-hydroxypropyl)-methacrylamide (HPMA) constitutes a promising biocompatible polymer. Towards the further development of these structures, non-invasive PET imaging allows insight into structure-property relationships in vivo. This performant tool can guide design optimization towards more effective drug delivery. Hence, versatile radiolabeling strategies need to be developed and establishing 18F- as well as 131I-labeling of diverse HPMA architectures forms the basis for short- as well as long-term in vivo evaluations. By means of the prosthetic group [18F]FETos, 18F-labeling of distinct HPMA polymer architectures (homopolymers, amphiphilic copolymers as well as block copolymers) was successfully accomplished enabling their systematic evaluation in tumor bearing rats. These investigations revealed pronounced differences depending on individual polymer characteristics (molecular weight, amphiphilicity due to incorporated hydrophobic laurylmethacrylate (LMA) segments, architecture) as well as on the studied tumor model. Polymers showed higher uptake for up to 4 h p.i. into Walker 256 tumors vs. AT1 tumors (correlating to a higher cellular uptake in vitro). Highest tumor concentrations were found for amphiphilic HPMA-ran-LMA copolymers in comparison to homopolymers and block copolymers. Notably, the random LMA copolymer P4* (Mw=55 kDa, 25% LMA) exhibited most promising in vivo behavior such as highest blood retention as well as tumor uptake. Further studies concentrated on the influence of PEGylation (‘stealth effect’) in terms of improving drug delivery properties of defined polymeric micelles. Here, [18F]fluoroethylation of distinct PEGylated block copolymers (0%, 1%, 5%, 7%, 11% of incorporated PEG2kDa) enabled to systematically study the impact of PEG incorporation ratio and respective architecture on the in vivo performance. Most strikingly, higher PEG content caused prolonged blood circulation as well as a linear increase in tumor uptake (Walker 256 carcinoma). Due to the structural diversity of potential polymeric carrier systems, further versatile 18F-labeling strategies are needed. Therefore, a prosthetic 18F-labeling approach based on the Cu(I)-catalyzed click reaction was established for HPMA-based polymers, providing incorporation of fluorine-18 under mild conditions and in high yields. On this basis, a preliminary µPET study of a HPMA-based polymer – radiolabeled via the prosthetic group [18F]F-PEG3-N3 – was successfully accomplished. By revealing early pharmacokinetics, 18F-labeling enables to time-efficiently assess the potential of HPMA polymers for efficient drug delivery. Yet, investigating the long-term fate is essential, especially regarding prolonged circulation properties and passive tumor accumulation (EPR effect). Therefore, radiolabeling of diverse HPMA copolymers with the longer-lived isotope iodine-131 was accomplished enabling in vivo evaluation of copolymer P4* over several days. In this study, tumor retention of 131I-P4* could be demonstrated at least over 48h with concurrent blood clearance thereby confirming promising tumor targeting properties of amphiphilic HPMA copolymer systems based on the EPR effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In der vorliegenden Arbeit fokussierten wir uns auf drei verschiedene Aspekte der Leishmanien-Infektion. Wir charakterisierten den Prozess des Zelltods „Apoptose“ bei Parasiten (1), untersuchten die Eignung von Makrophagen und dendritischen Zellen als Wirtszelle für die Entwicklung der Parasiten (2) und analysierten die Konsequenzen der Infektion für die Entstehung einer adaptiven Immunantwort im humanen System. Von zentraler Bedeutung für dieses Projekt war die Hypothese, dass apoptotische Leishmanien den Autophagie-Mechanismus ihrer Wirtszellen ausnutzen, um eine T-Zell-vermittelte Abtötung der Parasiten zu vermindern.rnWir definierten eine apoptotische Leishmanien-Population, welche durch eine rundliche Morphologie und die Expression von Phosphatidylserin auf der Parasitenoberfläche charakterisiert war. Die apoptotischen Parasiten befanden sich zudem in der SubG1-Phase und wiesen weniger und fragmentierte DNA auf, welche durch TUNEL-Assay nachgewiesen werden konnte. Bei der Interaktion der Parasiten mit humanen Makrophagen und dendritischen Zellen zeigte sich, dass die anti-inflammatorischen Makrophagen anfälliger für Infektionen waren als die pro-inflammatorischen Makrophagen oder die dendritischen Zellen. Interessanterweise wurde in den dendritischen Zellen jedoch die effektivste Umwandlung zur krankheitsauslösenden, amastigoten Lebensform beobachtet. Da sowohl Makrophagen als auch dendritische Zellen zu den antigenpräsentierenden Zellen gehören, könnte dies zur Aktivierung der T-Zellen des adaptiven Immunsystems führen. Tatsächlich konnte während der Leishmanien-Infektion die Proliferation von T-Zellen beobachtet werden. Dabei stellten wir fest, dass es sich bei den proliferierenden T-Zellen um CD3+CD4+ T-Zellen handelte, welche sich überraschenderweise als Leishmanien-spezifische CD45RO+ T-Gedächtniszellen herausstellten. Dies war unerwartet, da ein vorheriger Kontakt der Spender mit Leishmanien als unwahrscheinlich gilt. In Gegenwart von apoptotischen Parasiten konnte eine signifikant schwächere T-Zell-Proliferation in Makrophagen, jedoch nicht in dendritischen Zellen beobachtet werden. Da sich die T-Zell-Proliferation negativ auf das Überleben der Parasiten auswirkt, konnten die niedrigsten Überlebensraten in dendritischen Zellen vorgefunden werden. Innerhalb der Zellen befanden sich die Parasiten in beiden Zelltypen im Phagosom, welches allerdings nur in Makrophagen den Autophagie-Marker LC3 aufwies. Chemische Induktion von Autophagie führte, ebenso wie die Anwesenheit von apoptotischen Parasiten, zu einer stark reduzierten T-Zell-Proliferation und dementsprechend zu einem höheren Überleben der Parasiten.rnZusammenfassend lässt sich aus unseren Daten schließen, dass Apoptose in Einzellern vorkommt. Während der Infektion können sowohl Makrophagen, als auch dendritische Zellen mit Leishmanien infiziert und das adaptive Immunsystem aktivert werden. Die eingeleitete T-Zell-Proliferation nach Infektion von Makrophagen ist in Gegenwart von apoptotischen Parasiten reduziert, weshalb sie im Vergleich zu dendritischen Zellen die geeigneteren Wirtszellen für Leishmanien darstellen. Dafür missbrauchen die Parasiten den Autophagie-Mechanismus der Makrophagen als Fluchtstrategie um das adaptive Immunsystem zu umgehen und somit das Überleben der Gesamtpopulation zu sichern. Diese Ergebnisse erklären den Vorteil von Apoptose in Einzellern und verdeutlichen, dass der Autophagie-Mechanismus als potentielles therapeutisches Ziel für die Behandlung von Leishmaniose dienen kann.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is one of the most common genetic diseases in the Caucasian population and is characterized by chronic obstructive pulmonary disease, exocrine pancreatic insufficiency, and elevation of sodium and chloride concentrations in the sweat and infertility in men. The disease is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes a protein that functions as chloride channel at the apical membrane of different epithelia. Owing to the high genotypic and phenotypic disease heterogeneity, effects and consequences of the majority of the CFTR mutations have not yet been studied. Recently, the frameshift mutation 3905insT was identified as the second most frequent mutation in the Swiss population and found to be associated with a severe phenotype. The frameshift mutation produces a premature termination codon (PTC) in exon 20, and transcripts bearing this PTC are potential targets for degradation through nonsense-mediated mRNA decay (NMD) and/or for exon skipping through nonsense-associated alternative splicing (NAS). Using RT-PCR analysis in lymphocytes and different tissue types from patients carrying the mutation, we showed that the PTC introduced by the mutation does neither elicit a degradation of the mRNA through NMD nor an alternative splicing through NAS. Moreover, immunocytochemical analysis in nasal epithelial cells revealed a significantly reduced amount of CFTR at the apical membrane providing a possible molecular explanation for the more severe phenotype observed in F508del/3905insT compound heterozygotes compared with F508del homozygotes. However, further experiments are needed to elucidate the fate of the 3905insT CFTR in the cell after its biosynthesis.