960 resultados para Fashion.
Resumo:
Welding parameters like welding speed, rotation speed, plunge depth, shoulder diameter etc., influence the weld zone properties, microstructure of friction stir welds, and forming behavior of welded sheets in a synergistic fashion. The main aims of the present work are to (1) analyze the effect of welding speed, rotation speed, plunge depth, and shoulder diameter on the formation of internal defects during friction stir welding (FSW), (2) study the effect on axial force and torque during welding, (c) optimize the welding parameters for producing internal defect-free welds, and (d) propose and validate a simple criterion to identify defect-free weld formation. The base material used for FSW throughout the work is Al 6061T6 having a thickness value of 2.1 mm. Only butt welding of sheets is aimed in the present work. It is observed from the present analysis that higher welding speed, higher rotation speed, and higher plunge depth are preferred for producing a weld without internal defects. All the shoulder diameters used for FSW in the present work produced defect-free welds. The axial force and torque are not constant and a large variation is seen with respect to FSW parameters that produced defective welds. In the case of defect-free weld formation, the axial force and torque are relatively constant. A simple criterion, (a,tau/a,p)(defective) > (a,tau/a,p)(defect free) and (a,F/a,p)(defective) > (a,F/a,p)(defect free), is proposed with this observation for identifying the onset of defect-free weld formation. Here F is axial force, tau is torque, and p is welding speed or tool rotation speed or plunge depth. The same criterion is validated with respect to Al 5xxx base material. Even in this case, the axial force and torque remained constant while producing defect-free welds.
Resumo:
New metal complexes of the type M(nih)(L)](PF6)(n)center dot xAH(2)O and M(nih)(2)](PF6)center dot xH(2)O (where M = Co(III) or Ni(II), L = 1,10-phenanthroline (phen)/or 2,2' bipyridine (bpy), nih = 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone, n = 2 or 1 and x = 3 or 2) have been synthesized and characterized by elemental analysis, magnetic, IR and H-1 NMR spectral data. The electronic and magnetic moment 2.97-3.07 B.M. data infers octahedral geometry for all the complexes. The IR data reveals that Schiff base (nih) form coordination bond with the metal ion through azomethine-nitrogen, phenolic-oxygen and carbonyl-oxygen in a tridentate fashion. In addition, DNA-binding properties of these six metal complexes were investigated using absorption spectroscopy, viscosity measurements and thermal denaturation methods. The results indicated that the nickel(II) complex strongly bind with calf-thymus DNA with intrinsic DNA binding constant K-b value of 4.9 x 10(4) M-1 for (3), 4.2 x 10(4) M-1 for (4), presumably via an intercalation mechanism compared to cobalt(III) complex with K-b value of 4.6 x 10(4) M-1 (1) and 4.1 x 10(4) M-1 (2). The DNA Photoclevage experiment shows that, the complexes act as effective DNA cleavage agent. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P-jet = 10(44-45) erg s(-1), typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.
Resumo:
Novel composite cyclodextrin (CD)-CaCO3 spherical porous microparticles have been synthesized through Ca2+-CD complex formation, which influences the crystal growth of CaCO3. The CDs are entrapped and distributed uniformly in the matrix of CaCO3 microparticles during crystallization. The hydrophobic fluorescent molecules coumarin and Nile red (NR) are efficiently encapsulated into these composite CD-CaCO3 porous particles through supramolecular inclusion complexation between entrapped CDs and hydrophobic molecules. Thermogravimetric (TGA) and infrared spectroscopy (IR) analysis of composite CD-CaCO3 particles reveals the presence of large CDs and their strong interaction with calcium carbonate nanoparticles. The resulting composite CD-CaCO3 microparticles are utilized as sacrificial templates for preparation of CD-modified layer-by-layer (LbL) capsules. After dissolution of the carbonate core, CDs are retained in the interior of the capsules in a network fashion and assist in the encapsulation of hydrophobic molecules. The efficient encapsulation of the hydrophobic fluorescent dye, coumarin, was successfully demonstrated using CD-modified capsules. In vitro release of the encapsulated coumarin from the CD-CaCO3 and CD-modified capsules has been demonstrated.
Resumo:
The feasibility of using transition metal fragments to stabilize B2H4 in planar configuration by donating 2 electrons to the boron moiety is investigated. Building upon the existing theoretical and experimental data and aided by the isolobal analogy, the model transition metal complexes Cr(CO)(4)B2H4 (6), Mn(CO)-CpB2H4 (7), Fe(CO)(3)B2H4 (8) and CoCpB2H4 (9) are chosen to illustrate this unique bonding feature bond strengthening with pi-back donation. Other possible types of complexes with B2H4 and the metal fragment are also explored and the energies are compared. One of the low energy isomers wherein the planar B2H4 interacts with the metal fragment in an in-plane fashion represents a unique case study for the Dewar-Chatt-Duncanson model. In this complex the back-donation from the metal fills the p bonding orbital between the two boron atoms thus forming a B=B double bond.
Resumo:
We report on a wafer scale fabrication method of a three-dimensional plasmonic metamaterial with strong chiroptical response in the visible region of the electromagnetic spectrum. The system was comprised of metallic nanoparticles arranged in a helical fashion, with high degree of flexibility over the choice of the underlying material, as well as their geometrical parameters. This resulted in exquisite control over the chiroptical properties, most importantly the spectral signature of the circular dichroism. In spite of the large variability in the arrangement, as well as the size and shape of the constituent nanoparticles, the average chiro-optical response of the material remained uniform across the wafer, thus confirming the suitability of this system as a large area chiral metamaterial. By simply heating the substrate for a few minutes, the geometrical properties of the nanoparticles could be altered, thus providing an additional handle towards tailoring the spectral response of this novel material.
Resumo:
This paper reports on the mass transport behavior of infinitely extended, continuous, and very thin metallic films under the influence of electric current. Application of direct current of high densities (> 10(8) A/m(2)) results in visible melting of thin film at only one of the electrodes, and the melt then flows towards the other electrode in a circularly symmetric fashion forming a microscale ring pattern. For the two tested thin film systems, namely Cr and Al, of thicknesses ranging from 4 to 20 nm, the above directional flow consistently occurred from cathode to anode and anode to cathode, respectively. Furthermore, application of alternating electric current results in flow of the liquid material from both the electrodes. The dependence of critical flow behavior parameters, such as flow direction, flow velocity, and evolution of the ring diameter, are experimentally determined. Analytical models based on the principles of electromigration in liquid-phase materials are developed to explain the experimental observations.
Resumo:
Bacterial DNA topoisomerase I (topoI) carries out relaxation of negatively supercoiled DNA through a series of orchestrated steps, DNA binding, cleavage, strand passage and religation. The N-terminal domain (NTD) of the type IA topoisomerases harbor DNA cleavage and religation activities, but the carboxyl terminal domain (CTD) is highly diverse. Most of these enzymes contain a varied number of Zn2+ finger motifs in the CTD. The Zn2+ finger motifs were found to be essential in Escherichia coli topoI but dispensable in the Thermotoga maritima enzyme. Although, the CTD of mycobacterial topoI lacks Zn2+ fingers, it is indispensable for the DNA relaxation activity of the enzyme. The divergent CTD harbors three stretches of basic amino acids needed for the strand passage step of the reaction as demonstrated by a new assay. We also show that the basic amino acids constitute an independent DNA-binding site apart from the NTD and assist the simultaneous binding of two molecules of DNA to the enzyme, as required during the catalytic step. Although the NTD binds to DNA in a site-specific fashion to carry out DNA cleavage and religation, the basic residues in CTD bind to non-scissile DNA in a sequence-independent manner to promote the crucial strand passage step during DNA relaxation. The loss of Zn2+ fingers from the mycobacterial topoI could be associated with Zn2+ export and homeostasis.
Resumo:
The magnetic saw effect, induced by the Lorentz force generated due to the application of a series of electromagnetic ( EM) pulses, can be utilized to cut a metallic component containing a pre-existing cut or crack. By combining a mechanical force with the Lorentz force, the cut can be propagated along any arbitrary direction in a controlled fashion, thus producing an `electromagnetic jigsaw', yielding a novel tool-less, free-formed manufacturing process, particularly suitable for hard-to-cut metals. This paper presents validation of the above concept based on a simple analytical model, along with experiments on two materials - Pb foil and steel plate. (C) 2013 The Authors. Published by Elsevier B.V. Selection and/or peer-review under responsibility of Professor Bert Lauwers
Resumo:
beta-Prism I fold lectins constitute one of the five widely occurring structural classes of plant lectins. Each single domain subunit is made up of three Greek key motifs arranged in a threefold symmetric fashion. The threefold symmetry is not reflected in the sequence except in the case of the lectin from banana, a monocot, which carries two sugar-binding sites instead of the one in other lectins of known three-dimensional structure, all from dicots. This is believed to be a consequence of the different evolutionary paths followed by the lectin in monocots and dicots. The galactose-specific lectins among them have two chains produced by posttranslational proteolysis and contain three aromatic residues at the binding site. The extended binding sites of galactose- and mannose-specific lectins have been thoroughly characterized. Ligand binding at the sites involves both conformational selection and induced fit. Molecular plasticity of some of the lectins in the family has been characterized. The plasticity appears to be such as to promote variability in quaternary association which could be dimeric, tetrameric, or octameric. Structural and evolutionary reasons for the variability have been explored, and the relation of oligomerization to ligand binding and conformational selection investigated.
Resumo:
In this paper, we present a machine learning approach for subject independent human action recognition using depth camera, emphasizing the importance of depth in recognition of actions. The proposed approach uses the flow information of all 3 dimensions to classify an action. In our approach, we have obtained the 2-D optical flow and used it along with the depth image to obtain the depth flow (Z motion vectors). The obtained flow captures the dynamics of the actions in space time. Feature vectors are obtained by averaging the 3-D motion over a grid laid over the silhouette in a hierarchical fashion. These hierarchical fine to coarse windows capture the motion dynamics of the object at various scales. The extracted features are used to train a Meta-cognitive Radial Basis Function Network (McRBFN) that uses a Projection Based Learning (PBL) algorithm, referred to as PBL-McRBFN, henceforth. PBL-McRBFN begins with zero hidden neurons and builds the network based on the best human learning strategy, namely, self-regulated learning in a meta-cognitive environment. When a sample is used for learning, PBLMcRBFN uses the sample overlapping conditions, and a projection based learning algorithm to estimate the parameters of the network. The performance of PBL-McRBFN is compared to that of a Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classifiers with representation of every person and action in the training and testing datasets. Performance study shows that PBL-McRBFN outperforms these classifiers in recognizing actions in 3-D. Further, a subject-independent study is conducted by leave-one-subject-out strategy and its generalization performance is tested. It is observed from the subject-independent study that McRBFN is capable of generalizing actions accurately. The performance of the proposed approach is benchmarked with Video Analytics Lab (VAL) dataset and Berkeley Multimodal Human Action Database (MHAD). (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
An anti-Markovnikov geminal oxyamination of styrenyl alkenes in an intermolecular fashion using the umpolung strategy mediated by the bromonium ion is reported. Isotope labeling studies confirm the migration of the phenyl group in the semipinacol rearrangement.
Resumo:
Engineering at the molecular level is one of the most exciting new developments for the generation of functional materials. However, the concept of designing polynuclear extended structures from bottom up is still not mature. Although progress has been made with secondary building units (SBUs) in metal organic frameworks (MOFs), the control seems to be just an illusion when it comes to bridging ligands such as the azide ion. When we say that the azido ligand is versatile in its bridging capabilities, what we mean is that it would be difficult to predict or control its bridging properties. However, this kind of serendipity is not always bad news. For example, scientists have shown that the azido ligand can mediate magnetic exchanges between paramagnetic metals in a predictable fashion (usually depending upon the bonding geometries). Therefore, it is a well-respected ligand in polynuclear assemblies. Serendipitous assemblies offer new magnetic structures that we may not otherwise even think about synthesizing. The azido ligand forms a variety of complexes with copper(II) using different blocking amines or pyridine based ligands. Its structural nature changes upon changing the substitution on amine, as well as the amount of blocking ligand. In principle, if we take any of these complexes and provide more coordination sites to the bridging azido ligands by removing a fraction of the blocking ligands, we can get new complexes with intricate structural networks and therefore different magnetic properties with the same components as used for the parent complex. In this Account, we mainly discuss the development of a number of new topological and magnetic exchange systems synthesized using this concept. Not all of these new complexes can be grouped according to their basic building structures or even by the ratio of the metal to blocking ligand. Therefore, we divided the discussion by the nuclearity of the basic building structures. Some of the complexes with the same nuclearities have very similar or even almost identical basic structures. However, the way these building units are joined together (by the azido bridges) to form the overall extended structures differ almost in every case. The complexes having the Cu-6 core are particularly interesting from a structural point of view. Although they have almost identical basic structures, some of them are extended in three dimensions, but two of them are extended in two dimensions by two different bridging networks. In the complexes having linear Cu-4 basic units, we find that using similar ligands does not always give the same bridging networks even within the basic building structures. These complexes have also enriched the field of molecular magnetism. One of the complexes with a Cu-3 building unit has provided us with the opportunity to study the competing behavior of two different kinds of magnetic exchange mechanism (ferromagnetic and antiferromagnetic) acting simultaneously between two metal ions. Through density functional theory calculations, we showed how they work independently and their additive nature to produce the overall effect. The exciting methodology for the generation of copper(II) polyclusters presented in this Account will provide the opportunity to explore analogous serendipitous assembly of diverse structures with interesting magnetic behavior using other transition metal ions having more than one unpaired electrons.
Resumo:
A short and efficient chemical synthesis of biologically potent and novel 1-deoxythiosugars is accomplished. Introduction of sulfur mediated by benzyltriethylammonium tetrathiomolybdate, as a sulfur transfer reagent through nucleophilic double displacement of tosylate in alpha,omega-di-O-tosyl aldonolactones in an intramolecular fashion is the key feature. The subsequent reduction of thiosugar lactones with borohydride exchange resin (BER) offers a number of deoxythiosugars in good overall yield. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Mitochondrial biogenesis and morphological changes are associated with tissue-specific functional demand, but the factors and pathways that regulate these processes have not been completely identified. A lack of mitochondrial fusion has been implicated in various developmental and pathological defects. The spatiotemporal regulation of mitochondrial fusion in a tissue such as muscle is not well understood. Here, we show in Drosophila indirect flight muscles (IFMs) that the nuclear-encoded mitochondrial inner membrane fusion gene, Opa1-like, is regulated in a spatiotemporal fashion by the transcription factor/co-activator Erect wing (Ewg). In IFMs null for Ewg, mitochondria undergo mitophagy and/or autophagy accompanied by reduced mitochondrial functioning and muscle degeneration. By following the dynamics of mitochondrial growth and shape in IFMs, we found that mitochondria grow extensively and fuse during late pupal development to form the large tubular mitochondria. Our evidence shows that Ewg expression during early IFM development is sufficient to upregulate Opa1-like, which itself is a requisite for both late pupal mitochondrial fusion and muscle maintenance. Concomitantly, by knocking down Opa1-like during early muscle development, we show that it is important for mitochondrial fusion, muscle differentiation and muscle organization. However, knocking down Opa1-like, after the expression window of Ewg did not cause mitochondrial or muscle defects. This study identifies a mechanism by which mitochondrial fusion is regulated spatiotemporally by Ewg through Opa1-like during IFM differentiation and growth.