817 resultados para Error of measurement
Resumo:
OBJECTIVE: To investigate whether orally administered misoprostol during the third stage of labor is efficient in reducing postpartum blood loss. METHODS: In a double-masked trial, during vaginal delivery women were randomly assigned to receive a single oral dose of misoprostol (600 microg) or placebo in third stage of labor, immediately after cord clamping. The third stage of labor was managed routinely by early cord clamping and controlled cord traction; oxytocin was administered only if blood loss seemed more than usual. Blood loss was estimated by the delivering physician and differences in hematocrit were measured before and after delivery. RESULTS: Mean (+/- standard error of the mean) estimated blood loss (345 +/- 19.5 mL versus 417 +/- 25.9 mL, P = .031) and hematocrit difference (4.5 +/- 0.9% versus 7.9 +/- 1.2%, P = .014) were significantly lower in women who received misoprostol than those who received placebo. Fewer women in the misoprostol group had postpartum hemorrhage (blood loss of at least 500 mL), but that difference was not statistically significant (7% versus 15%, P = .43). Additional oxytocin before or after placental separation was used less often in the misoprostol group (16% versus 38%, P = .047). There were no differences in the length of third stage of labor (8 +/- 0.9 minutes versus 9 +/- 1 minutes, P = .947). There were no differences in pain during third stage of labor, postpartum fever, or diarrhea, but shivering was more frequent in the misoprostol group. CONCLUSION: Oral misoprostol administered in the third stage of labor reduced postpartum blood loss and might be effective in reducing incidence of postpartum hemorrhage.
Resumo:
In normal dogs and dogs with subaortic stenosis, it is known that the subcostal transducer site provides higher left ventricular ejection velocities than does the left apical site. We hypothesized that aortic flow velocities could also be obtained from the right parasternal long-axis view, optimized for the placement of the Doppler cursor as parallel as possible into the aortic root. In 15 healthy dogs and 13 healthy cats, high-pulsed repetition frequency Doppler flow velocity measurements in the proximal aorta were performed using two-dimensional echocardiographic guidance. The mean [ +/- standard error of the mean (SEM)] peak aortic flow velocities in healthy dogs were as follows: subcostal site 1.46 +/- 0.05 m/s; apical site 1.12 +/- 0.06 m/s; right parasternal long-axis site 1.09 +/- 0.05 m/s. In healthy cats, the following peak aortic flow velocities were observed: apical site 0.87 +/- 0.03m/s; right parasternal long-axis site 0.87 +/- 0.03 m/s. Aortic flow velocities obtained from the subcostal site were significantly higher in healthy dogs than those obtained from the left apical and right parasternal long-axis site (P< 0.001). There was no statistical difference between the peak aortic flow velocities obtained from right parasternal long-axis and left apical transducer position in all groups. We conclude therefore that right parasternal long-axis and left apical-derived aortic flow velocities are similar and may be used interchangeably in healthy dogs and cats.
Resumo:
Diagnosis of udder infections with Staphylococcus aureus by bacteriological milk testing of quarter milk samples is often not satisfactory. To get reliable results, repeated sampling is necessary, which is normally too expensive. Therefore, we developed a test that allows the highly specific detection of Staph. aureus in bovine milk samples at very low concentrations. It is based on a fast procedure to prepare bacteria from milk, followed by DNA extraction and quantitative PCR. The whole analysis is done within 5 h. For clinical milk samples, the analytical sensitivity of the assay was 50.7 times and 507 times higher than conventional bacteriology with 100 and 10 microL, respectively. The diagnostic specificity was 100%. The test is further characterized by a low intra- and interassay variability as well as by a good recovery of Staph. aureus from raw milk. Furthermore, a high correlation (R = 0.925) between the agar plate counts and the quantitative PCR methodology over the whole range of measurement was found. In addition, our test revealed considerably more positive results than bacteriology. Due to its favorable properties, the assay might become an important diagnostic tool in the context of bovine mastitis caused by Staph. aureus.
Resumo:
CONCLUSION: Our self-developed planning and navigation system has proven its capacity for accurate surgery on the anterior and lateral skull base. With the incorporation of augmented reality, image-guided surgery will evolve into 'information-guided surgery'. OBJECTIVE: Microscopic or endoscopic skull base surgery is technically demanding and its outcome has a great impact on a patient's quality of life. The goal of the project was aimed at developing and evaluating enabling navigation surgery tools for simulation, planning, training, education, and performance. This clinically applied technological research was complemented by a series of patients (n=406) who were treated by anterior and lateral skull base procedures between 1997 and 2006. MATERIALS AND METHODS: Optical tracking technology was used for positional sensing of instruments. A newly designed dynamic reference base with specific registration techniques using fine needle pointer or ultrasound enables the surgeon to work with a target error of < 1 mm. An automatic registration assessment method, which provides the user with a color-coded fused representation of CT and MR images, indicates to the surgeon the location and extent of registration (in)accuracy. Integration of a small tracker camera mounted directly on the microscope permits an advantageous ergonomic way of working in the operating room. Additionally, guidance information (augmented reality) from multimodal datasets (CT, MRI, angiography) can be overlaid directly onto the surgical microscope view. The virtual simulator as a training tool in endonasal and otological skull base surgery provides an understanding of the anatomy as well as preoperative practice using real patient data. RESULTS: Using our navigation system, no major complications occurred in spite of the fact that the series included difficult skull base procedures. An improved quality in the surgical outcome was identified compared with our control group without navigation and compared with the literature. The surgical time consumption was reduced and more minimally invasive approaches were possible. According to the participants' questionnaires, the educational effect of the virtual simulator in our residency program received a high ranking.
Resumo:
BACKGROUND: Noninvasive intraocular pressure (IOP) measurement in mice is critically important for understanding the pathophysiology of glaucoma. Rebound tonometry is one of the methods that can be used for obtaining such measurements. We evaluated the ability of the rebound tonometer (RT) to determine IOP differences among various mouse strains and whether differences in corneal thickness may affect IOP measurements in these animals. MATERIALS AND METHODS: Five different commonly used mouse strains (BALB/C, CBA/CAHN, AKR/J, CBA/J, and 129P3/J) were used. IOP was measured in eyes from 12 nonsedated animals (6 male and 6 female) from each strain at 2 to 3 months of age using the RT. IOPs were measured in all animals, on 2 different days between 10 AM and 12 PM. Subsequently, a number of eyes from each strain were cannulated to provide a calibration curve specific for that strain. Tonometer readings for all strains were converted to apparent IOP values using the calibration data obtained from the calibration curve of the respective strain. For comparison purposes, IOP values were also obtained using the C57BL/6 calibration data previously reported. IOP for the 5 strains, male and female animals, and the different occasion of measurement were compared using repeat measures analysis of variance. The central corneal thickness (CCT) of another group of 8 male animals from each of the 5 strains was also measured using an optical low coherence reflectometry (OLCR) pachymeter modified for use with mice. CCT values were correlated to mean IOPs of male animals and to the slopes and intercept of individual strain calibration curves. RESULTS: Noninvasive IOP measurements confirm that the BALB/C strain has lower and the CBA/CAHN has higher relative IOPs than other mouse strains while the AKR/J, the CBA/J, and the 129P3/J strains have intermediate IOPs. There is a very good correlation of apparent IOP values obtained by RT with previously reported true IOPs obtained by cannulation. There was a small but statistically significant difference in IOP between male and female animals in 2 strains (129P3/J and AKR/J) with female mice having higher relative IOPs. No correlation between CCT and IOP was detected. CCT did not correlate with any of the constants describing the calibration curves in the various strains. CONCLUSIONS: Noninvasive IOP measurement in mice using the RT can be used to help elucidate IOP phenotype, after prior calibration of the tonometer. CCT has no effect on mouse IOP measurements using the RT.
Resumo:
The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effects of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.
Resumo:
Constructing a 3D surface model from sparse-point data is a nontrivial task. Here, we report an accurate and robust approach for reconstructing a surface model of the proximal femur from sparse-point data and a dense-point distribution model (DPDM). The problem is formulated as a three-stage optimal estimation process. The first stage, affine registration, is to iteratively estimate a scale and a rigid transformation between the mean surface model of the DPDM and the sparse input points. The estimation results of the first stage are used to establish point correspondences for the second stage, statistical instantiation, which stably instantiates a surface model from the DPDM using a statistical approach. This surface model is then fed to the third stage, kernel-based deformation, which further refines the surface model. Handling outliers is achieved by consistently employing the least trimmed squares (LTS) approach with a roughly estimated outlier rate in all three stages. If an optimal value of the outlier rate is preferred, we propose a hypothesis testing procedure to automatically estimate it. We present here our validations using four experiments, which include 1 leave-one-out experiment, 2 experiment on evaluating the present approach for handling pathology, 3 experiment on evaluating the present approach for handling outliers, and 4 experiment on reconstructing surface models of seven dry cadaver femurs using clinically relevant data without noise and with noise added. Our validation results demonstrate the robust performance of the present approach in handling outliers, pathology, and noise. An average 95-percentile error of 1.7-2.3 mm was found when the present approach was used to reconstruct surface models of the cadaver femurs from sparse-point data with noise added.
Resumo:
An epidural puncture was performed using the lumbosacral approach in 18 dogs, and the lack of resistance to an injection of saline was used to determine that the needle was positioned correctly. The dogs' arterial blood pressure and epidural pressure were recorded. They were randomly assigned to two groups: in one group an injection of a mixture of local anaesthetic agents was made slowly over 90 seconds and in the other it was made over 30 seconds. After 10 minutes contrast radiography was used to confirm the correct placement of the needle. The mean (sd) initial pressure in the epidural space was 0.1 (0.7) kPa. After the injection the mean maximum epidural pressure in the group injected slowly was 5.5 (2.1) kPa and in the group injected more quickly it was 6.0 (1.9) kPa. At the end of the period of measurement, the epidural pressure in the slow group was 0.8 (0.5) kPa and in the rapid group it was 0.7 (0.5) kPa. Waves synchronous with the arterial pulse wave were observed in 15 of the dogs before the epidural injection, and in all the dogs after the epidural injection.
Resumo:
Magnetic resonance imaging of inhaled fluorinated inert gases ((19)F-MRI) such as sulfur hexafluoride (SF(6)) allows for analysis of ventilated air spaces. In this study, the possibility of using this technique to image lung function was assessed. For this, (19)F-MRI of inhaled SF(6) was compared with respiratory gas analysis, which is a global but reliable measure of alveolar gas fraction. Five anesthetized pigs underwent multiple-breath wash-in procedures with a gas mixture of 70% SF(6) and 30% oxygen. Two-dimensional (19)F-MRI and end-expiratory gas fraction analysis were performed after 4 to 24 inhaled breaths. Signal intensity of (19)F-MRI and end-expiratory SF(6) fraction were evaluated with respect to linear correlation and reproducibility. Time constants were estimated by both MRI and respiratory gas analysis data and compared for agreement. A good linear correlation between signal intensity and end-expiratory gas fraction was found (correlation coefficient 0.99+/-0.01). The data were reproducible (standard error of signal intensity 8% vs. that of gas fraction 5%) and the comparison of time constants yielded a sufficient agreement. According to the good linear correlation and the acceptable reproducibility, we suggest the (19)F-MRI to be a valuable tool for quantification of intrapulmonary SF(6) and hence lung function.
Resumo:
AIMS: To assess the impact of different implant systems on the clinical conditions and the microbiota at implants, and whether the presence of bacteria at tooth sites was predictive of the presence at implant sites. MATERIALS AND METHODS: Subjects with either AstraTech or Brånemark in function for 7 years were enrolled. Sub-gingival bacterial samples at tooth and implant sites were collected with sterile endodontic paper points, and analyzed by the checkerboard DNA-DNA hybridization method (40 species). RESULTS: Fifty-four subjects, 27 supplied with AstraTech (n=132 implants) and 27 with Brånemark (n=102) implants, were studied. Test tooth sites had significantly less evidence of bleeding on probing (P<0.001) and presence of plaque (P<0.001) than implant test sites. Implant sites presented with deeper probing pocket depth than tooth sites (mean difference: 1.1 mm, standard error of differences: 0.08, 95% confidence intervals (CI): 0.9-1.3, P<0.001). Tannerella forsythia (P<0.05), Capnocytophaga sputigena (P<0.05), Actinomyces israelii (P<0.05) and Lactobacillus acidophilus (P<0.05) were found at higher levels at tooth surfaces. No differences in bacterial load for any species were found between the two implant systems. The odds of being present/absent at tooth and implants sites were only significant for Staphylococcus aureus [odds ratio (OR): 5.2 : 1, 95% CI: 1.4-18.9, P<0.01]. CONCLUSIONS: After 7 years in function, implants presented with deeper probing depths than teeth. S. aureus was commonly present at both teeth and implants sites. S. aureus at tooth sites was predictive of also being present at implant sites.
Resumo:
BACKGROUND: Ornithine transcarbamylase (OTC) deficiency is the most common inborn error of urea metabolism that can lead to hyperammonemic crises and orotic aciduria. To date, a total of 341 causative mutations within the OTC gene have been described. However, in about 20% of the patients with enzymatically confirmed OTC deficiency no mutation can be detected when sequencing of genomic DNA analyzing exons and adjacent intronic segments of the OTC gene is performed. METHODS: Standard genomic DNA analysis of the OTC gene in five consecutive patients from five families revealed no mutation. Hence, liver tissue was obtained by needle sampling or open biopsy and RNA extracted from liver was analyzed. RESULTS: Complex rearrangements of the OTC transcript (three insertions and two deletions) were found in all five patients. CONCLUSION: In patients with a strong suspicion of OTC deficiency despite normal results of sequencing exonic regions of the OTC gene, characterization of liver OTC mRNA is highly effective in resolving the genotype. Liver tissue sampling by needle aspiration allows for both enzymatic analysis and RNA based diagnostics of OTC deficiency.
Resumo:
Physical fitness can be evaluated in competitive and school sports with different field tests under different conditions and goals. To produce valid results, a field test must be practical and reach high standards of test criteria (objectivity, reliability, validity). The purpose of this study was to investigate the test criteria and the practicability of a group of field tests called «SUISSE Sport Test Konzept Basis Feldtestbatterie». For 20-m sprint, ventral trunk muscle test, standing long jump, 2-kg medicine ball shot, obstacle course and cooper-test, test quality and practicability were evaluated. 221 children and adolescents from competitive sports and different school levels took part in the study. According to school level, they were divided into 3 groups (P: 7–11.5 y, S1: 11.6–15.5 y, S2: 15.6–21.8 y). Objectivity was tested for time or distance measurement in all tests as well as for error rating in obstacle test. For reliability measurement, 162 subjects performed the field tests twice within a few weeks. For validity results of standing long jump were compared with counter movement jump performance on a force plate. Correlation analysis was performed and level of significance was set for p < 0.05. For accuracy standard error was calculated. All tests achieved sufficient to excellent objectiv - ity with correlation-coefficient (r) lying between 0.85 and 0.99. Reliability was very good (r = 0.84–0.97). In cooper- and trunk test, reliability was higher for athletes than for pupils (trunk test: r = 0.95 vs. r = 0.62, cooper-test: r = 0.90 vs. r = 0.78). In those tests the reliability decreases with increasing age (cooper-test: P: r = 0.84, S1: r = 0.69, S2: r = 0.52; trunk-test: P: r = 0.69, S1: r = 0.71; S2: r = 0.39). Validity for standing long jump was good (r = 0.75–0.86). The standard error of the mean was between 4–8%, with the exception for cooper-test (athletes: 6%, pupils: 11%) and trunk test (athletes: 14%, pupils: 46%). The results show that the evaluated group of field tests is a practicable, objective and reliable tool to determine physical skills in young athletes as well as in a scholar setting over a broad age range. Most of the tests achieved the test criteria with the grades good to excellent. The lower coefficient of reliability for cooper- and trunk test by the pupils could be explained by motivational problems in this setting. For up to 20 subjects, a tester can accomplish the tests within 3 h. Finally, age-dependent grades were elaborated
Resumo:
Using a convenient and fast HPLC procedure we determined serum concentrations of the fungistatic agent 5-fluorocytosine (5-FC) in 375 samples from 60 patients treated with this drug. The mean trough concentration (n = 127) was 64.3 mg/l (range: 11.8-208.0 mg/l), the mean peak concentration (n = 122) was 99.9 mg/l (range: 25.6-263.8 mg/l), the mean nonpeak/nontrough concentration (n = 126) was 80.1 mg/l (range: 10.5-268.0 mg/l). Totally 134 (35.7%) samples were outside the therapeutic range (25-100 mg/l), 108 (28.8%) being too high, 26 (6.9%) being too low. Forty-four (73%) patients showed 5-FC serum concentrations outside the therapeutic range at least once during the treatment course. In a prospective study we performed 65 dosage predictions on 30 patients by use of a 3-point method previously developed for aminoglycoside dosage adaptation. The mean absolute prediction error of the dosage adaptation was +0.7 mg/l (range: -26.0 to +28.0 mg/l). The root mean square prediction error was 10.7 mg/l. The mean predicted concentration (65.3 mg/l) agreed very well with the mean measured concentration (64.6 mg/l). The frequency distribution of 5-FC serum concentrations indicates that 5-FC monitoring is important. The applied pharmacokinetic method allows individual adaptations of 5-FC dosage with a clinically acceptable prediction error.
Resumo:
This paper presents a system for 3-D reconstruction of a patient-specific surface model from calibrated X-ray images. Our system requires two X-ray images of a patient with one acquired from the anterior-posterior direction and the other from the axial direction. A custom-designed cage is utilized in our system to calibrate both images. Starting from bone contours that are interactively identified from the X-ray images, our system constructs a patient-specific surface model of the proximal femur based on a statistical model based 2D/3D reconstruction algorithm. In this paper, we present the design and validation of the system with 25 bones. An average reconstruction error of 0.95 mm was observed.
Resumo:
In order to assess the clinical relevance of a slice-to-volume registration algorithm, this technique was compared to manual registration. Reformatted images obtained from a diagnostic CT examination of the lower abdomen were reviewed and manually registered by 41 individuals. The results were refined by the algorithm. Furthermore, a fully automatic registration of the single slices to the whole CT examination, without manual initialization, was also performed. The manual registration error for rotation and translation was found to be 2.7+/-2.8 degrees and 4.0+/-2.5 mm. The automated registration algorithm significantly reduced the registration error to 1.6+/-2.6 degrees and 1.3+/-1.6 mm (p = 0.01). In 3 of 41 (7.3%) registration cases, the automated registration algorithm failed completely. On average, the time required for manual registration was 213+/-197 s; automatic registration took 82+/-15 s. Registration was also performed without any human interaction. The resulting registration error of the algorithm without manual pre-registration was found to be 2.9+/-2.9 degrees and 1.1+/-0.2 mm. Here, a registration took 91+/-6 s, on average. Overall, the automated registration algorithm improved the accuracy of manual registration by 59% in rotation and 325% in translation. The absolute values are well within a clinically relevant range.