885 resultados para Entire functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quadratic programming optimization procedure for designing asymmetric apodization windows tailored to the shape of time-domain sample waveforms recorded using a terahertz transient spectrometer is proposed. By artificially degrading the waveforms, the performance of the designed window in both the time and the frequency domains is compared with that of conventional rectangular, triangular (Mertz), and Hamming windows. Examples of window optimization assuming Gaussian functions as the building elements of the apodization window are provided. The formulation is sufficiently general to accommodate other basis functions. (C) 2007 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein kinase C (PKC) plays a pivotal role in modulating the growth of melanocytic cells in culture. We have shown previously that a major physiological substrate of PKC, the 80 kDa myristoylated alanine-rich C-kinase substrate (MARCKS), can be phosphorylated in quiescent, non-tumorigenic melanocytes exposed transiently to a biologically active phorbol ester, but cannot be phosphorylated in phorbol ester-treated, syngeneic malignant melanoma cells. Despite its ubiquitous distribution, the function of MARCKS in cell growth and transformation remains to be demonstrated clearly. We report here that MARCKS mRNA and protein levels are down-regulated significantly in the spontaneously derived murine B16 melanoma cell line compared with syngeneic normal Mel-ab melanocytes. In contrast, the tumourigenic v-Ha-ras-transfonned melan-ocytic line, LTR Ras 2, showed a high basal level of MARCKS phosphorylation which was not enhanced by treatment of cells with phorbol ester. Furthermore, protein levels of MARCKS in LTR Ras 2 cells were similar to those expressed in Mel-ab melanocytes. However, in four out of six murine tumour cell lines investigated, levels of MARCKS protein were barely detectable. Transfection of B16 cells with a plasmid containing the MARCKS cDNA in the sense orientation produced two neomycin-resistant clones displaying reduced proliferative capacity and decreased anchorage-independent growth compared with control cells. In contrast, transfection with the antisense MARCKS construct produced many colonies which displayed enhanced growth and transforming potential compared with control cells. Thus, MARCKS appears to act as a novel growth suppressor in the spontaneous transformation of cells of melanocyte origin and may play a more general role in the tumour progression of other carcinomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative analysis by mass spectrometry (MS) is a major challenge in proteomics as the correlation between analyte concentration and signal intensity is often poor due to varying ionisation efficiencies in the presence of molecular competitors. However, relative quantitation methods that utilise differential stable isotope labelling and mass spectrometric detection are available. Many drawbacks inherent to chemical labelling methods (ICAT, iTRAQ) can be overcome by metabolic labelling with amino acids containing stable isotopes (e.g. 13C and/or 15N) in methods such as Stable Isotope Labelling with Amino acids in Cell culture (SILAC). SILAC has also been used for labelling of proteins in plant cell cultures (1) but is not suitable for whole plant labelling. Plants are usually autotrophic (fixing carbon from atmospheric CO2) and, thus, labelling with carbon isotopes becomes impractical. In addition, SILAC is expensive. Recently, Arabidopsis cell cultures were labelled with 15N in a medium containing nitrate as sole nitrogen source. This was shown to be suitable for quantifying proteins and nitrogen-containing metabolites from this cell culture (2,3). Labelling whole plants, however, offers the advantage of studying quantitatively the response to stimulation or disease of a whole multicellular organism or multi-organism systems at the molecular level. Furthermore, plant metabolism enables the use of inexpensive labelling media without introducing additional stress to the organism. And finally, hydroponics is ideal to undertake metabolic labelling under extremely well-controlled conditions. We demonstrate the suitability of metabolic 15N hydroponic isotope labelling of entire plants (HILEP) for relative quantitative proteomic analysis by mass spectrometry. To evaluate this methodology, Arabidopsis plants were grown hydroponically in 14N and 15N media and subjected to oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time correlation functions yield profound information about the dynamics of a physical system and hence are frequently calculated in computer simulations. For systems whose dynamics span a wide range of time, currently used methods require significant computer time and memory. In this paper, we discuss the multiple-tau correlator method for the efficient calculation of accurate time correlation functions on the fly during computer simulations. The multiple-tau correlator is efficacious in terms of computational requirements and can be tuned to the desired level of accuracy. Further, we derive estimates for the error arising from the use of the multiple-tau correlator and extend it for use in the calculation of mean-square particle displacements and dynamic structure factors. The method described here, in hardware implementation, is routinely used in light scattering experiments but has not yet found widespread use in computer simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurofuzzy modelling systems combine fuzzy logic with quantitative artificial neural networks via a concept of fuzzification by using a fuzzy membership function usually based on B-splines and algebraic operators for inference, etc. The paper introduces a neurofuzzy model construction algorithm using Bezier-Bernstein polynomial functions as basis functions. The new network maintains most of the properties of the B-spline expansion based neurofuzzy system, such as the non-negativity of the basis functions, and unity of support but with the additional advantages of structural parsimony and Delaunay input space partitioning, avoiding the inherent computational problems of lattice networks. This new modelling network is based on the idea that an input vector can be mapped into barycentric co-ordinates with respect to a set of predetermined knots as vertices of a polygon (a set of tiled Delaunay triangles) over the input space. The network is expressed as the Bezier-Bernstein polynomial function of barycentric co-ordinates of the input vector. An inverse de Casteljau procedure using backpropagation is developed to obtain the input vector's barycentric co-ordinates that form the basis functions. Extension of the Bezier-Bernstein neurofuzzy algorithm to n-dimensional inputs is discussed followed by numerical examples to demonstrate the effectiveness of this new data based modelling approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blumeria graminis is an economically important obligate plant-pathogenic fungus, whose entire genome was recently sequenced and manually annotated using ab initio in silico predictions [7]. Employing large scale proteogenomic analysis we are now able to verify independently the existence of proteins predicted by 24% of open reading frame models. We compared the haustoria and sporulating hyphae proteomes and identified 71 proteins exclusively in haustoria, the feeding and effector-delivery organs of the pathogen. These proteins are ‘significantly smaller than the rest of the protein pool and predicted to be secreted. Most do not share any similarities with Swiss–Prot or Trembl entries nor possess any identifiable Pfam domains. We used a novel automated prediction pipeline to model the 3D structures of the proteins, identify putative ligand binding sites and predict regions of intrinsic disorder. This revealed that the protein set found exclusively in haustoria is significantly less disordered than the rest of the identified Blumeria proteins or random (and representative) protein sets generated from the yeast proteome. For most of the haustorial proteins with unknown functions no good templates could be found, from which to generate high quality models. Thus, these unknown proteins present potentially new protein folds that can be specific to the interaction of the pathogen with its host.