813 resultados para Engenharia Eletrotécnica - Telecomunicações
Resumo:
The use of flexible materials for the development of planar circuits is one of the most desired and studied characteristics, lately, by researchers. This happens because the flexibility of the substrate can provide previously impracticable applications, due to the rigidity of the substrates normally used that makes it difficult to fit into the circuits in irregular surfaces. The constant interest in recent years for more lighter devices, increasingly more compacts, flexible and with low cost, led to a new line of research of great interest from both academic and technological views, that is the study and development of textile substrates that can be applied in the development of planar circuits, for applications in the areas of security, biomedical and telecommunications. This paper proposes the development of planar circuits, such as antennas , frequency selective surfaces (FSS) and planar filters, using textile (cotton ticking, jeans and brim santista) as the dielectric substrate and the Pure Copper Polyester Taffeta Fabric, a textile of pure copper, highly conductive, lightweight and flexible, commercially sold as a conductive material. The electrical characteristics of textiles (electric permittivity and loss tangent) were characterized using the transmission line method (rectangular waveguide) and compared with those found in the literature. The structures were analyzed using commercial software Ansoft Designer and Ansoft HFSS, both from the company Ansys and for comparison we used the Iterative Method of Waves (WCIP). For the purpose of validation were built and measured several prototypes of antennas, planar filters and FSS, being possible to confirm an excellent agreement between simulated and measured results
Resumo:
This dissertation presents a cooperative virtual multimedia enviroment for employing on time medical Field, using a TCP/IP computer network. The Virtual Diagnosis Room environment make it possible to perform cooperative tasks using classical image processing. Synchronous and assynchronous text conversation (chat) and content markup, in order to produce remote cooperative diagnosis. The dissertation also describes the tool in detail and its functions, that enables the interaction among users, along with implementation detals, contributions and weakness of this work
Resumo:
Metamaterials have attracted a great attention in recent years mostly due to their electromagnetic properties not found in nature. Since metamaterials began to be synthesized by the insertion of artificially manufactured inclusions in a medium specified host , it provides the researcher a broad collection of independent parameters such as the electromagnetic properties of the material host. In this work was presents an investigation of the unique properties of Split Ring Resonators and compounds metamaterials was performed. We presents a theoretical and numerical analysis , using the full-wave formalism by applying the Transverse Transmission Line - LTT method for the radiation characteristics of a rectangular microstrip antenna using metamaterial substrate, as is successfully demonstrated the practical use of these structures in antennas. We experimentally confirmed that composite metamaterial can improved the performance of the structures considered in this thesis
Resumo:
This work has as main objective to show all the particularities regarding the Three-phase Power Summation Method, used for load flow calculation, in what it says respect to the influence of the magnetic coupling among the phases, as well as to the losses presented in all the existent transformers in the feeder to be analyzed. Besides, its application is detailed in the study of the short-circuits, that happen in the presence of high impedance values, which possess a problem, that is its difficult detection and consequent elimination on the part of common devices of protection. That happens due to the characteristic presented by the current of short¬ circuit, in being generally of the same order of greatness that the load currents. Results of simulations accomplished in several situations will be shown, objectifying a complete analysis of the behavior of the proposed method in several types of short-circuits. Confront of the results obtained by the method with results of another works will be presented to verify its effectiveness
Resumo:
In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed
Resumo:
The pumping of fluids in pipelines is the most economic and safe form of transporting fluids. That explains why in Europe there was in 1999 about 30.000 Km [7] of pipelines of several diameters, transporting millíons of cubic meters of crude oil end refined products, belonging to COCAWE (assaciation of companies of petroleum of Europe for health, environment and safety, that joint several petroleum companies). In Brazil they are about 18.000 Km of pipelines transporting millions of cubic meters of liquids and gases. In 1999, nine accidents were registered to COCAWE. Among those accidents one brought a fatal victim. The oil loss was of 171 m3, equivalent to O,2 parts per million of the total of the transported volume. Same considering the facts mentioned the costs involved in ao accident can be high. An accident of great proportions can bríng loss of human lives, severe environmental darnages, loss of drained product, loss . for dismissed profit and damages to the image of the company high recovery cost. In consonance with that and in some cases for legal demands, the companies are, more and more, investing in systems of Leak detection in pipelines based on computer algorithm that operate in real time, seeking wíth that to minimize still more the drained volumes. This decreases the impacts at the environment and the costs. In general way, all the systems based on softWare present some type of false alarm. In general a commitment exists betWeen the sensibílity of the system and the number of false alarms. This work has as objective make a review of thé existent methods and to concentrate in the analysis of a specific system, that is, the system based on hydraulic noise, Pressure Point Analyzis (PPA). We will show which are the most important aspects that must be considered in the implementation of a Leak Detection System (LDS), from the initial phase of the analysis of risks passing by the project bases, design, choice of the necessary field instrumentation to several LDS, implementation and tests. We Will make na analysis of events (noises) originating from the flow system that can be generator of false alarms and we will present a computer algorithm that restricts those noises automatically
Resumo:
We revisit the problem of visibility, which is to determine a set of primitives potentially visible in a set of geometry data represented by a data structure, such as a mesh of polygons or triangles, we propose a solution for speeding up the three-dimensional visualization processing in applications. We introduce a lean structure , in the sense of data abstraction and reduction, which can be used for online and interactive applications. The visibility problem is especially important in 3D visualization of scenes represented by large volumes of data, when it is not worthwhile keeping all polygons of the scene in memory. This implies a greater time spent in the rendering, or is even impossible to keep them all in huge volumes of data. In these cases, given a position and a direction of view, the main objective is to determine and load a minimum ammount of primitives (polygons) in the scene, to accelerate the rendering step. For this purpose, our algorithm performs cutting primitives (culling) using a hybrid paradigm based on three known techniques. The scene is divided into a cell grid, for each cell we associate the primitives that belong to them, and finally determined the set of primitives potentially visible. The novelty is the use of triangulation Ja 1 to create the subdivision grid. We chose this structure because of its relevant characteristics of adaptivity and algebrism (ease of calculations). The results show a substantial improvement over traditional methods when applied separately. The method introduced in this work can be used in devices with low or no dedicated processing power CPU, and also can be used to view data via the Internet, such as virtual museums applications
Resumo:
This work aims to show how the application of frequency selective surfaces (FSS) in planar antenna arrays become an alternative to obtain desired radiation characteristics from changes in radiation parameters of the arrays, such as bandwidth, gain and directivity. In addition to analyzing these parameters is also made a study of the mutual coupling between the elements of the array. To accomplish this study, were designed a microstrip antenna array with two patch elements, fed by a network feed. Another change made in the array was the use of the truncated ground plane, with the objective of increasing the bandwidth and miniaturize the elements of the array. In order to study the behavior of frequency selective surfaces applied in antenna arrays, three different layouts were proposed. The first layout uses the FSS as a superstrate (above the array). The second layout uses the FSS as reflector element (below the array). The third layout is placed between two FSS. Numerical and experimental results for each of the proposed configurations are presented in order to validate the research
Resumo:
This master dissertation introduces a study about some aspects that determine the aplication of adaptative arrays in DS-CDMA cellular systems. Some basics concepts and your evolution in the time about celular systems was detailed here, meanly the CDMA tecnique, specialy about spread-codes and funtionaly principies. Since this, the mobile radio enviroment, with your own caracteristcs, and the basics concepts about adaptive arrays, as powerfull spacial filter was aborded. Some adaptative algorithms was introduced too, these are integrants of the signals processing, and are answerable for weights update that influency directly in the radiation pattern of array. This study is based in a numerical analysis of adaptative array system behaviors related to the used antenna and array geometry types. All the simulations was done by Mathematica 4.0 software. The results for weights convergency, square mean error, gain, array pattern and supression capacity based the analisis made here, using RLS (supervisioned) and LSDRMTA (blind) algorithms
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
During a petroleum well production process, It is common the slmultaneous oil and water production, in proportion that can vary from 0% up to values close to 100% of water. Moreover, the production flows can vary a lot, depending on the charaeteristies of eaeh reservoir. Thus being, the meters used in field for the flow and BSW (water in the oil) measurement must work well in wide bands of operation. For the evaluation of the operation of these meters, in the different operation conditions, a Laboratory will be built in UFRN, that has for objective to evaluate in an automatic way the processes of flow and BSW petroleum measurement, considering different operation conditions. The good acting of these meters is fundamental for the accuracy of the measures of the volumes of production liquid and rude of petroleum. For the measurement of this production, the petroleum companies use meters that should indicate the values with tha largast possible accuracy and to respect a series of conditions and minimum requirements, estabelished by the united Entrance ANP/INMETRO 19106/2000. The laboratory of Evafuation of the Processes of Measurement of Flow and BSW to be built will possess an oil tank basically, a tank of water, besides a mixer, a tank auditor, a tank for separation and a tank of residues for discard of fluids, fundamental for the evaluation of the flow metars and BSW. The whole process will be automated through the use of a Programmable Logicat Controller (CLP) and of a supervisory system.This laboratory besides allowing the evaluation of flow meters and BSW used by petroleum companies, it will make possible the development of researches related to the automation. Besides, it will be a collaborating element to the development of the Computer Engineering and Automation Department, that it will propitiate the evolution of the faculty and discente, qualifying them for a job market in continuous growth. The present work describes the project of automation of the laboratory that will be built at of UFRN. The system will be automated using a Programmable Logical Controller and a supervisory system. The programming of PLC and the screens of the supervisory system were developed in this work
Resumo:
The industries are getting more and more rigorous, when security is in question, no matter is to avoid financial damages due to accidents and low productivity, or when it s related to the environment protection. It was thinking about great world accidents around the world involving aircrafts and industrial process (nuclear, petrochemical and so on) that we decided to invest in systems that could detect fault and diagnosis (FDD) them. The FDD systems can avoid eventual fault helping man on the maintenance and exchange of defective equipments. Nowadays, the issues that involve detection, isolation, diagnose and the controlling of tolerance fault are gathering strength in the academic and industrial environment. It is based on this fact, in this work, we discuss the importance of techniques that can assist in the development of systems for Fault Detection and Diagnosis (FDD) and propose a hybrid method for FDD in dynamic systems. We present a brief history to contextualize the techniques used in working environments. The detection of fault in the proposed system is based on state observers in conjunction with other statistical techniques. The principal idea is to use the observer himself, in addition to serving as an analytical redundancy, in allowing the creation of a residue. This residue is used in FDD. A signature database assists in the identification of system faults, which based on the signatures derived from trend analysis of the residue signal and its difference, performs the classification of the faults based purely on a decision tree. This FDD system is tested and validated in two plants: a simulated plant with coupled tanks and didactic plant with industrial instrumentation. All collected results of those tests will be discussed
Resumo:
The precision and the fast identification of abnormalities of bottom hole are essential to prevent damage and increase production in the oil industry. This work presents a study about a new automatic approach to the detection and the classification of operation mode in the Sucker-rod Pumping through dynamometric cards of bottom hole. The main idea is the recognition of the well production status through the image processing of the bottom s hole dynamometric card (Boundary Descriptors) and statistics and similarity mathematics tools, like Fourier Descriptor, Principal Components Analysis (PCA) and Euclidean Distance. In order to validate the proposal, the Sucker-Rod Pumping system real data are used
Resumo:
This work presents a theoretical and numerical analysis of Frequency Selective Surfaces (FSS) with elements as rectangular patch, thin dipole and crossed dipole mounted on uniaxial anisotropic dielectric substrate layers for orientations of the optical axis along x, y and z directions. The analysis of these structures is accomplished by combination of the Hertz vector potentials method and the Galerkin's technique, in the Fourier transform-domain, using entire¬domain basis functions. This study consists in the use of one more technique for analysis of FSS on anisotropic dielectric substrate. And presents as the main contribution the introduction of one more project parameter to determinate the transmission and reflection characteristics of periodic structures, from the use of anisotropic dielectric with orientations of the crystal optical axis along x, y and z directions. To validate this analysis, the numerical results of this work are compared to those obtained by other authors, for FSS structures on anisotropic and isotropic dielectric substrates. Also are compared experimental results and the numerical correspondent ones for the FSS isotropic case. The technique proposed in this work is accurate and efficient. ln a second moment, curves are presented for the transmission and reflection characteristics of the FSS structures using conducting patch elements mounted on uniaxial anisotropic dielectric substrate layers with optical axis oriented along x, y and z directions. From analysis of these curves, the performance of the considered FSS structures as function of the optical axis orientation is described
Resumo:
This work presents a model of bearingless induction machine with divided winding. The main goal is to obtain a machine model to use a simpler control system as used in conventional induction machine and to know its behavior. The same strategies used in conventional machines were used to reach the bearingless induction machine model, which has made possible an easier treatment of the involved parameters. The studied machine is adapted from the conventional induction machine, the stator windings were divided and all terminals had been available. This method does not need an auxiliary stator winding for the radial position control which results in a more compact machine. Another issue about this machine is the variation of inductances array also present in result of the rotor displacement. The changeable air-gap produces variation in magnetic flux and in inductances consequently. The conventional machine model can be used for the bearingless machine when the rotor is centered, but in rotor displacement condition this model is not applicable. The bearingless machine has two sets of motor-bearing, both sets with four poles. It was constructed in horizontal position and this increases difficulty in implementation. The used rotor has peculiar characteristics; it is projected according to the stator to yield the greatest torque and force possible. It is important to observe that the current unbalance generated by the position control does not modify the machine characteristics, this only occurs due the radial rotor displacement. The obtained results validate the work; the data reached by a supervisory system corresponds the foreseen results of simulation which verify the model veracity