961 resultados para Elliptic Equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on an elementary course in ordinary differential equations (odes) for students in engineering sciences. The course is also intended to become a self-study package for odes and is is based on several interactive computer lessons using REDUCE and MATHEMATICA . The aim of the course is not to do Computer Algebra (CA) by example or to use it for doing classroom examples. The aim ist to teach and to learn mathematics by using CA-systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this paper is the development of suitable bases (replacing the power basis x^n (n\in\IN_\le 0) which enable the direct series representation of orthogonal polynomial systems on non-uniform lattices (quadratic lattices of a discrete or a q-discrete variable). We present two bases of this type, the first of which allows to write solutions of arbitrary divided-difference equations in terms of series representations extending results given in [16] for the q-case. Furthermore it enables the representation of the Stieltjes function which can be used to prove the equivalence between the Pearson equation for a given linear functional and the Riccati equation for the formal Stieltjes function. If the Askey-Wilson polynomials are written in terms of this basis, however, the coefficients turn out to be not q-hypergeometric. Therefore, we present a second basis, which shares several relevant properties with the first one. This basis enables to generate the defining representation of the Askey-Wilson polynomials directly from their divided-difference equation. For this purpose the divided-difference equation must be rewritten in terms of suitable divided-difference operators developed in [5], see also [6].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhalt dieser Arbeit ist ein Verfahren zur numerischen Lösung der zweidimensionalen Flachwassergleichung, welche das Fließverhalten von Gewässern, deren Oberflächenausdehnung wesentlich größer als deren Tiefe ist, modelliert. Diese Gleichung beschreibt die gravitationsbedingte zeitliche Änderung eines gegebenen Anfangszustandes bei Gewässern mit freier Oberfläche. Diese Klasse beinhaltet Probleme wie das Verhalten von Wellen an flachen Stränden oder die Bewegung einer Flutwelle in einem Fluss. Diese Beispiele zeigen deutlich die Notwendigkeit, den Einfluss von Topographie sowie die Behandlung von Nass/Trockenübergängen im Verfahren zu berücksichtigen. In der vorliegenden Dissertation wird ein, in Gebieten mit hinreichender Wasserhöhe, hochgenaues Finite-Volumen-Verfahren zur numerischen Bestimmung des zeitlichen Verlaufs der Lösung der zweidimensionalen Flachwassergleichung aus gegebenen Anfangs- und Randbedingungen auf einem unstrukturierten Gitter vorgestellt, welches in der Lage ist, den Einfluss topographischer Quellterme auf die Strömung zu berücksichtigen, sowie in sogenannten \glqq lake at rest\grqq-stationären Zuständen diesen Einfluss mit den numerischen Flüssen exakt auszubalancieren. Basis des Verfahrens ist ein Finite-Volumen-Ansatz erster Ordnung, welcher durch eine WENO Rekonstruktion unter Verwendung der Methode der kleinsten Quadrate und eine sogenannte Space Time Expansion erweitert wird mit dem Ziel, ein Verfahren beliebig hoher Ordnung zu erhalten. Die im Verfahren auftretenden Riemannprobleme werden mit dem Riemannlöser von Chinnayya, LeRoux und Seguin von 1999 gelöst, welcher die Einflüsse der Topographie auf den Strömungsverlauf mit berücksichtigt. Es wird in der Arbeit bewiesen, dass die Koeffizienten der durch das WENO-Verfahren berechneten Rekonstruktionspolynome die räumlichen Ableitungen der zu rekonstruierenden Funktion mit einem zur Verfahrensordnung passenden Genauigkeitsgrad approximieren. Ebenso wird bewiesen, dass die Koeffizienten des aus der Space Time Expansion resultierenden Polynoms die räumlichen und zeitlichen Ableitungen der Lösung des Anfangswertproblems approximieren. Darüber hinaus wird die wohlbalanciertheit des Verfahrens für beliebig hohe numerische Ordnung bewiesen. Für die Behandlung von Nass/Trockenübergangen wird eine Methode zur Ordnungsreduktion abhängig von Wasserhöhe und Zellgröße vorgeschlagen. Dies ist notwendig, um in der Rechnung negative Werte für die Wasserhöhe, welche als Folge von Oszillationen des Raum-Zeit-Polynoms auftreten können, zu vermeiden. Numerische Ergebnisse die die theoretische Verfahrensordnung bestätigen werden ebenso präsentiert wie Beispiele, welche die hervorragenden Eigenschaften des Gesamtverfahrens in der Berechnung herausfordernder Probleme demonstrieren.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis is about the inverse problem in differential Galois Theory. Given a differential field, the inverse  problem asks which linear algebraic groups can be realized as differential Galois groups of Picard-Vessiot extensions of this field.   In this thesis we will concentrate on the realization of the classical groups as differential Galois groups. We introduce a method for a very general realization of these groups. This means that we present for the classical groups of Lie rank $l$ explicit linear differential equations where the coefficients are differential polynomials in $l$ differential indeterminates over an algebraically closed field of constants $C$, i.e. our differential ground field is purely differential transcendental over the constants.   For the groups of type $A_l$, $B_l$, $C_l$, $D_l$ and $G_2$ we managed to do these realizations at the same time in terms of Abhyankar's program 'Nice Equations for Nice Groups'. Here the choice of the defining matrix is important. We found out that an educated choice of $l$ negative roots for the parametrization together with the positive simple roots leads to a nice differential equation and at the same time defines a sufficiently general element of the Lie algebra. Unfortunately for the groups of type $F_4$ and $E_6$ the linear differential equations for such elements are of enormous length. Therefore we keep in the case of $F_4$ and $E_6$ the defining matrix differential equation which has also an easy and nice shape.   The basic idea for the realization is the application of an upper and lower bound criterion for the differential Galois group to our parameter equations and to show that both bounds coincide. An upper and lower bound criterion can be found in literature. Here we will only use the upper bound, since for the application of the lower bound criterion an important condition has to be satisfied. If the differential ground field is $C_1$, e.g., $C(z)$ with standard derivation, this condition is automatically satisfied. Since our differential ground field is purely differential transcendental over $C$, we have no information whether this condition holds or not.   The main part of this thesis is the development of an alternative lower bound criterion and its application. We introduce the specialization bound. It states that the differential Galois group of a specialization of the parameter equation is contained in the differential Galois group of the parameter equation. Thus for its application we need a differential equation over $C(z)$ with given differential Galois group. A modification of a result from Mitschi and Singer yields such an equation over $C(z)$ up to differential conjugation, i.e. up to transformation to the required shape. The transformation of their equation to a specialization of our parameter equation is done for each of the above groups in the respective transformation lemma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider numerical methods for the compressible time dependent Navier-Stokes equations, discussing the spatial discretization by Finite Volume and Discontinuous Galerkin methods, the time integration by time adaptive implicit Runge-Kutta and Rosenbrock methods and the solution of the appearing nonlinear and linear equations systems by preconditioned Jacobian-Free Newton-Krylov, as well as Multigrid methods. As applications, thermal Fluid structure interaction and other unsteady flow problems are considered. The text is aimed at both mathematicians and engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the theory of the Navier-Stokes equations, the proofs of some basic known results, like for example the uniqueness of solutions to the stationary Navier-Stokes equations under smallness assumptions on the data or the stability of certain time discretization schemes, actually only use a small range of properties and are therefore valid in a more general context. This observation leads us to introduce the concept of SST spaces, a generalization of the functional setting for the Navier-Stokes equations. It allows us to prove (by means of counterexamples) that several uniqueness and stability conjectures that are still open in the case of the Navier-Stokes equations have a negative answer in the larger class of SST spaces, thereby showing that proof strategies used for a number of classical results are not sufficient to affirmatively answer these open questions. More precisely, in the larger class of SST spaces, non-uniqueness phenomena can be observed for the implicit Euler scheme, for two nonlinear versions of the Crank-Nicolson scheme, for the fractional step theta scheme, and for the SST-generalized stationary Navier-Stokes equations. As far as stability is concerned, a linear version of the Euler scheme, a nonlinear version of the Crank-Nicolson scheme, and the fractional step theta scheme turn out to be non-stable in the class of SST spaces. The positive results established in this thesis include the generalization of classical uniqueness and stability results to SST spaces, the uniqueness of solutions (under smallness assumptions) to two nonlinear versions of the Euler scheme, two nonlinear versions of the Crank-Nicolson scheme, and the fractional step theta scheme for general SST spaces, the second order convergence of a version of the Crank-Nicolson scheme, and a new proof of the first order convergence of the implicit Euler scheme for the Navier-Stokes equations. For each convergence result, we provide conditions on the data that guarantee the existence of nonstationary solutions satisfying the regularity assumptions needed for the corresponding convergence theorem. In the case of the Crank-Nicolson scheme, this involves a compatibility condition at the corner of the space-time cylinder, which can be satisfied via a suitable prescription of the initial acceleration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an immersed interface method for the incompressible Navier Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid at the immersed boundary. The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines. The strength of singular forces is determined by solving a small system of equations at each time step. The Navier-Stokes equations are discretized on a staggered Cartesian grid by a second order accurate projection method for pressure and velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a set of sequential integro-difference equations to analyze the dynamics of two interacting species. Firstly, we derive the speed of the fronts when a species invades a space previously occupied by a second species, and check its validity by means of numerical random-walk simulations. As an example, we consider the Neolithic transition: the predictions of the model are consistent with the archaeological data for the front speed, provided that the interaction parameter is low enough. Secondly, an equation for the coexistence time between the invasive and the invaded populations is obtained for the first time. It agrees well with the simulations, is consistent with observations of the Neolithic transition, and makes it possible to estimate the value of the interaction parameter between the incoming and the indigenous populations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend a previous model of the Neolithic transition in Europe [J. Fort and V. Méndez, Phys. Rev. Lett. 82, 867 (1999)] by taking two effects into account: (i) we do not use the diffusion approximation (which corresponds to second-order Taylor expansions), and (ii) we take proper care of the fact that parents do not migrate away from their children (we refer to this as a time-order effect, in the sense that it implies that children grow up with their parents, before they become adults and can survive and migrate). We also derive a time-ordered, second-order equation, which we call the sequential reaction-diffusion equation, and use it to show that effect (ii) is the most important one, and that both of them should in general be taken into account to derive accurate results. As an example, we consider the Neolithic transition: the model predictions agree with the observed front speed, and the corrections relative to previous models are important (up to 70%)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercises and solutions about ordinary differential equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercises and solutions for a second year differential equations course.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este documento analiza la relación de doble causalidad entre salud y empleo y su comportamiento dinámico usando datos de Estados Unidos tomados del PSID (Pane Study of Income Dynamics). Este estudio usa dos variables dependientes (Estado de salud auto-reportado y Empleo), las cuales son estimadas usando un modelo probit bivariado para abordar el problema de endegeneidad presente en dicha relación. Los resultados muestran evidencia significativa de la existencia de dicha endogeneidad y del impacto positivo que tiene sobre la probabilidad de ser empleado tener un buen estado de salud y vicesersa, sin embargo, el impacto de la situación de empleo sobre el estado de salud se encuentra que no es significativa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de este documento es recopilar algunos resultados clasicos sobre existencia y unicidad ´ de soluciones de ecuaciones diferenciales estocasticas (EDEs) con condici ´ on final (en ingl ´ es´ Backward stochastic differential equations) con particular enfasis en el caso de coeficientes mon ´ otonos, y su cone- ´ xion con soluciones de viscosidad de sistemas de ecuaciones diferenciales parciales (EDPs) parab ´ olicas ´ y el´ıpticas semilineales de segundo orden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a cell by cell anisotropic adaptive mesh technique is added to an existing staggered mesh Lagrange plus remap finite element ALE code for the solution of the Euler equations. The quadrilateral finite elements may be subdivided isotropically or anisotropically and a hierarchical data structure is employed. An efficient computational method is proposed, which only solves on the finest level of resolution that exists for each part of the domain with disjoint or hanging nodes being used at resolution transitions. The Lagrangian, equipotential mesh relaxation and advection (solution remapping) steps are generalised so that they may be applied on the dynamic mesh. It is shown that for a radial Sod problem and a two-dimensional Riemann problem the anisotropic adaptive mesh method runs over eight times faster.