893 resultados para Dismorfia muscular
Resumo:
Phosphorylase content in the muscle of some fish and shell fish were estimated. Jew fish (Johnius dussumeri) and 'sea naran'(Penaeus indicus) recorded the highest enzyme content among the fish and shell fish studied. As phosphorylase is the key enzyme in glycogenolysis, which is the energy source of fish for muscular activity, the possible role of phosphorylase content as an index of muscular capacity and post-mortem autolysis is discussed.
Resumo:
Humans have exceptional abilities to learn new skills, manipulate tools and objects, and interact with our environment. In order to be successful at these tasks, our brain has become exceptionally well adapted to learning to deal not only with the complex dynamics of our own limbs but also with novel dynamics in the external world. While learning of these dynamics includes learning the complex time-varying forces at the end of limbs through the updating of internal models, it must also include learning the appropriate mechanical impedance in order to stabilize both the limb and any objects contacted in the environment. This article reviews the field of human learning by examining recent experimental evidence about adaptation to novel unstable dynamics and explores how this knowledge about the brain and neuro-muscular system can expand the learning capabilities of robotics and prosthetics. © 2006.
Resumo:
A new species of trematodes Pleorchis heterorchis is described from the fishes Lutjanus johnii and Otolithus argenteus of Karachi coast. The new species is characterized by having a lanceolate body with a notch at the middle of the posterior end of the body. Body surface is smooth, ventral sucker rounded, situated at the anterior middle region of the body, pre-pharynx is well developed, widened posteriorly, pharynx muscular, oesophagus short, intestine H-shaped with anterior arms much shorter than the posterior, intestinal bifurcation almost in the middle of fore body, anterior caeca wide and short extending as far as anterior limit of pharynx. Posteriorly caeca reach to posterior end of the body with no lateral out pocketing. Testes 44 in number, intercecal arranged in 2 parallel rows, sub-globular, entire to slightly irregular, almost of same sizes extending immediately from posterior of the ovary to anterior of excretory vesicle. Cirrus pouch overlaps the ventral sucker, extends into hind body, terminating above the ovary, containing bipartite seminal vesicle, pars prostatica and ejaculatory duct. Genital pore behind the intestinal bifurcation and pre-acetabular. Ovary pre-testicular, consists of 16 follicles of varying sizes. Vitellaria lateral, follicular, extending from post bifurcal to posterior extremity. Excretory vesicle reaches to the posterior level of last pair of testes.
Resumo:
A host of methods and tools to support designing are being developed in Cambridge EDC. These range from tools for design management to those for the generation and selection of design ideas, layouts, materials and production processes. A project, to develop a device to improve arm mobility of muscular dystrophy sufferers, is undertaken as a test-bed to evaluate and improve these methods and tools as well as to observe and modify its design and management processes. This paper presents the difficulties and advantages of using design methods and tools within this rehabilitation design context, with special focus on the evolution of the designs, tools, and management processes.
Resumo:
海水经济鱼类的养殖在我国已经形成第四次海水养殖浪潮,经济效益显著,有力地推动了我国海水养殖的产业结构调整和可持续发展。然而在海水养殖发展过程中也存在着诸多问题,尤其是早期发育阶段的高死亡率,严重制约了我国海水养殖产业的稳定和健康发展。 海水鱼类养殖的关键为高质量,高存活率苗种的生产和培育,由于鱼类种类繁多,生物多样性丰富,对应实际的繁育技术,尤其是新品种的开发,必须要做出相应的调整。这就要求我们必须对每一种鱼类早期发育有所了解,并将形态和组织上的数据用于指导生产。 本文通过显微观察和组织学研究,主要描述和研究了我国北方三种重要的海水经济鱼类(条斑星鲽、杂交鲆、条石鲷)的早期发育生物学,并结合实际生产进一步阐明关键期的产生原因,机理以及采用相应的对策。具体结果如下: 1.条斑星鲽:作为冷温性鲆鲽鱼类,条斑星鲽早期发育过程的特征主要有: ① 条斑星鲽受精卵无油球,卵子呈半浮性;不同步卵裂现象提前,发生在第三次卵裂;卵裂期裂球大小差异大。孵化过程较长,在水温8 ± 0.3℃,盐度33的条件下,经9 d孵化。条斑星鲽胚胎发育的不同时期对温度的敏感性不同,其中原肠期对温度比较敏感。 ②在8-10℃,盐度33的条件下,8-9 dph开口摄食。且开口时,其吻前端出现有一点状黑褐色素,构成了条斑星鲽仔鱼“开口期”的重要标志。卵黄囊于消失。在后期仔鱼末期,背鳍和臀鳍上形成特有的黑褐色条斑带。 ③杯状细胞首先出现在咽腔后部和食道前段,胃腺和幽门盲囊出现于29 dph,变态期始于30dph。在条斑星鲽早期发育过程中,观察到其直肠粘膜层细胞质出现大量嗜伊红颗粒,为仔鱼肠道上皮吸收的蛋白质。 ④首先淋巴化的免疫器官是头肾,然后是胸腺和脾脏,这与大部分硬骨鱼类不同。条斑星鲽除头肾和脾脏外,胸腺实质也形成MMCs。其中以脾脏形成MMCs最为丰富,形态多样。 2. 杂交鲆:为同属的牙鲆和夏鲆间的远缘杂交种,其发育过程的特点为: ① 在温度为15.4~16.0℃,杂交鲆胚胎从受精到孵化所需的时间为76 h左右,胚孔关闭前期,胚胎先出现视囊及克氏囊,而后形成体节。孵出前胚体在卵膜内环绕不到1周。 ② 孵化后消失。杂交鲆群体变态间隔长(34-60 dph),且变态高峰期出现的冠状幼鳍不明显(与母本牙鲆相比),数量为7-8根。 ③组织学观察发现,其消化系统中胃腺出现较晚,且胃腺发育过程缓慢(与母本牙鲆相比)。甲状腺滤泡增生不明显,颜色较浅,数量较少。杂交鲆在早期发育过程中,并没有出现鳔原基。 3. 条石鲷作为岩礁性的暖水性鱼类,早期发育过程也较为特殊,包括外形以及内部的器官结构。主要特点有: ① 受精卵:受精卵卵黄上具有龟裂结构,为鱼卵的分类特征之一。 ② 初孵仔鱼:初孵仔鱼背鳍膜上的黑色素,从体背面向背鳍膜边缘移动,到3dph仔鱼基本消失,此为本种仔鱼发育所特有的特点。 ③ 后期仔鱼和稚鱼:肠道肌肉层加厚明显,仔稚鱼胃肠排空率急剧上升,死亡率增加,通过改善常规的投饵方式部分解决了这个死亡高峰的问题。在幼鱼初期,牙齿融合为骨喙,为石鲷科鱼类的特征。 ④胸腺上皮分泌细胞:类似的现象同样在虹鳟鱼中发现,但是虹鳟鱼胸腺上皮分泌细胞不如条石鲷的丰富,同样也不如条石鲷的排列整齐,而是零星分布在胸腺上皮与咽腔接触的表面。除了正常的造血器官—脾脏和头肾外,肝脏、胰腺和鳔等多种组织等也出现MMCs,此现象在硬骨鱼类不多见,一般发生在软骨鱼类。
Resumo:
Six species belonging to two families of Hemichordata have previously been recorded in Chinese waters. This paper records the discovery and description of a new species of the genus Glandiceps found in Jiaozhou Bay, Qingdao, Shandong Province, named Glandiceps qingdaoensis. The new species has a long proboscis with dorsal and ventral grooves, a stomochord with a long vermiform process, a proboscis cavity with a dorsal median, right and left glomeruli, right and left glomeruli very large and encircling the stomochord, a proboscis skeleton in the cavity extends into the median posterior of the collar, a well-developed dorsal ventral muscular septum in the proboscis cavity dividing the cavity completely into two separate parts. The collar cord is without giant nerve roots. The trunk with four distinct regions that can be recognized externally: branchial-genital region, genital region, hepatic region, and intestinal region. The dorsal pharynx is large and the gill pores are small. The tongue bars are encircled by vesicles, and the first gonad commences at the level of the second or third gill slit.
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
This paper shows how a minimal neural network model of the cerebellum may be embedded within a sensory-neuro-muscular control system that mimics known anatomy and physiology. With this embedding, cerebellar learning promotes load compensation while also allowing both coactivation and reciprocal inhibition of sets of antagonist muscles. In particular, we show how synaptic long term depression guided by feedback from muscle stretch receptors can lead to trans-cerebellar gain changes that are load-compensating. It is argued that the same processes help to adaptively discover multi-joint synergies. Simulations of rapid single joint rotations under load illustrates design feasibility and stability.
Resumo:
This article describes two neural network modules that form part of an emerging theory of how adaptive control of goal-directed sensory-motor skills is achieved by humans and other animals. The Vector-Integration-To-Endpoint (VITE) model suggests how synchronous multi-joint trajectories are generated and performed at variable speeds. The Factorization-of-LEngth-and-TEnsion (FLETE) model suggests how outflow movement commands from a VITE model may be performed at variable force levels without a loss of positional accuracy. The invariance of positional control under speed and force rescaling sheds new light upon a familiar strategy of motor skill development: Skill learning begins with performance at low speed and low limb compliance and proceeds to higher speeds and compliances. The VITE model helps to explain many neural and behavioral data about trajectory formation, including data about neural coding within the posterior parietal cortex, motor cortex, and globus pallidus, and behavioral properties such as Woodworth's Law, Fitts Law, peak acceleration as a function of movement amplitude and duration, isotonic arm movement properties before and after arm-deafferentation, central error correction properties of isometric contractions, motor priming without overt action, velocity amplification during target switching, velocity profile invariance across different movement distances, changes in velocity profile asymmetry across different movement durations, staggered onset times for controlling linear trajectories with synchronous offset times, changes in the ratio of maximum to average velocity during discrete versus serial movements, and shared properties of arm and speech articulator movements. The FLETE model provides new insights into how spina-muscular circuits process variable forces without a loss of positional control. These results explicate the size principle of motor neuron recruitment, descending co-contractive compliance signals, Renshaw cells, Ia interneurons, fast automatic reactive control by ascending feedback from muscle spindles, slow adaptive predictive control via cerebellar learning using muscle spindle error signals to train adaptive movement gains, fractured somatotopy in the opponent organization of cerebellar learning, adaptive compensation for variable moment-arms, and force feedback from Golgi tendon organs. More generally, the models provide a computational rationale for the use of nonspecific control signals in volitional control, or "acts of will", and of efference copies and opponent processing in both reactive and adaptive motor control tasks.
Resumo:
OBJECTIVE: Pathological gaits have been shown to limit transfer between potential (PE) and kinetic (KE) energy during walking, which can increase locomotor costs. The purpose of this study was to examine whether energy exchange would be limited in people with knee osteoarthritis (OA). METHODS: Ground reaction forces during walking were collected from 93 subjects with symptomatic knee OA (self-selected and fast speeds) and 13 healthy controls (self-selected speed) and used to calculate their center of mass (COM) movements, PE and KE relationships, and energy recovery during a stride. Correlations and linear regressions examined the impact of energy fluctuation phase and amplitude, walking velocity, body mass, self-reported pain, and radiographic severity on recovery. Paired t-tests were run to compare energy recovery between cohorts. RESULTS: Symptomatic knee OA subjects displayed lower energetic recovery during self-selected walking speeds than healthy controls (P = 0.0018). PE and KE phase relationships explained the majority (66%) of variance in recovery. Recovery had a complex relationship with velocity and its change across speeds was significantly influenced by the self-selected walking speed of each subject. Neither radiographic OA scores nor subject self-reported measures demonstrated any relationship with energy recovery. CONCLUSIONS: Knee OA reduces effective exchange of PE and KE, potentially increasing the muscular work required to control movements of the COM. Gait retraining may return subjects to more normal patterns of energy exchange and allow them to reduce fatigue.