855 resultados para DRUG-RESISTANCE GENE
Resumo:
Objective: Beta-hydroxy-beta-methylbutyrate (HM beta) is a metabolite of leucine widely used for improving sports performance. Although limp is recognized to promote anabolic or anti-catabolic effects on protein metabolism, the impact of its long-term use on skeletal muscle and/or genes that control the skeletal protein balance is not fully known. This study aimed to investigate whether chronic HM beta treatment affects the activity of GH/IGF-I axis and skeletal muscle IGF-I and myostatin mRNA expression. Design: Rats were treated with HK beta (320 mg/kg BW) or vehicle, by gavage, for 4 weeks, and killed by decapitation. Blood was collected for evaluation of serum insulin, glucose and IGF-I concentrations. Samples of pituitary, liver, extensor digitorum longus (EDL) and soleus muscles were collected for total RNA or protein extraction to evaluate the expression of pituitary growth hormone (GH) gene (mRNA and protein), hepatic insulin-like growth factor I (IGF-I) mRNA, skeletal muscle IGF-I and myostatin mRNA by Northern blotting/real time-PCR, or Western blotting. Results: Chronic HM beta treatment increased the content of pituitary GH mRNA and GH, hepatic IGF-I mRNA and serum IGF-I concentration. No changes were detected on skeletal muscle IGF-I and myostatin mRNA expression. However, the HIM-treated rats although normoglycemic, exhibited hyperinsulinemia. Conclusions: The data presented herein extend the body of evidence on the potential role of HM beta-treatment in stimulating GH/IGF-I axis activity. In spite of this effect, HM beta supplementation also induces an apparent insulin resistance state which might limit the beneficial aspects of the former results, at least in rats under normal nutritional status and health conditions. (C) 2010 Growth Hormone Research Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Glutathione S-transferase (GST) is a family of enzymes involved in the detoxification of electrophilic compounds. Different classes of GST are expressed in various organs, such as liver, lungs, stomach and others. Expression of GST can be modulated by diet components and plant-derived compounds. The importance of controlling GST expression is twofold: increasing levels of GST are beneficial to prevent deleterious effects of toxic and carcinogenic compounds, while inhibition of GST in tumor cells may help overcoming tumor resistance to chemotherapy. A screening of 16 plants used in the Brazilian pharmacopoeia tested their effects on GST expression in hepatocytes and Jurkat (leukemia) T-cells. The methanol extracts of five plants inhibited GST expression in hepatocytes. Three plants significantly inhibited and four others induced GST expression in Jurkat cells. Among these, the extracts of Bauhinia forficata Link. (Leguminosae) and Cecropia pachystachya Trec. (Urticaceae) inhibited GST expression at relatively low concentrations. With the exception of B. forficata, all plants were cytotoxic when administered to Jurkat cells at high doses (1 mg/mL) and some extracts were considerably cytotoxic even at lower concentrations.
Resumo:
Resistance of Leishmania parasites to specific chemotherapy has become a well-documented problem in the Indian subcontinent in recent years but only a few studies have focused on the susceptibility of American Leishmania isolates. Our susceptibility assays to meglumine antimoniate were performed against intracellular amastigotes after standardizing an in vitro model of macrophage infection appropriate for Leishmania (Viannia) braziliensis isolates. For the determination of promastigote susceptibility to amphotericin B, we developed a simplified MTT-test. The sensitivity in vitro to meglumine antimoniate and amphotericin B of 13 isolates obtained from Brazilian patients was determined. L. (V.) braziliensis isolates were more susceptible to meglumine antimoniate than Leishmania (Leishmania) amazonensis. EC(50), EC(90) and activity indexes (calculated over the sensitivity of reference strains), suggested that all isolates tested were susceptible in vitro to meglumine antimoniate, and did not show association with the clinical outcomes. Isolates were also uniformly susceptible in vitro to amphotericin B.
Resumo:
This study describes the association of curcumin with light emitting diode (LED) for the inactivation of Candida albicans. Suspensions of Candida were treated with nine curcumin concentrations and exposed to LED at different fluences. The protocol that showed the best outcomes for Candida inactivation was selected to evaluate the effect of the preirradiation time (PIT) on photodynamic therapy (PDT) effectiveness, the uptake of curcumin by C. albicans cells and the possible involvement of singlet oxygen in the photodynamic action. Curcumin-mediated PDT was also assessed against biofilms. In addition to the microbiological experiments, similar protocols were tested on a macrophage cell line and the effect was evaluated by Methyltetrazolium assay (MTT) and SEM analysis. The optical properties of curcumin were investigated as a function of illumination fluence. When compared with the control group, a statistically significant reduction in C. albicans viability was observed after PDT (P < 0.05), for both planktonic and biofilm cultures. Photodynamic effect was greatly increased with the presence of curcumin in the surrounding media and the PIT of 20 min improved PDT effectiveness against biofilms. Although PDT was phototoxic to macrophages, the therapy was more effective in inactivating the yeast cell than the defense cell. The spectral changes showed a high photobleaching rate of curcumin.
Resumo:
P>Although photodynamic therapy (PDT) has shown great promise for the inactivation of Candida species, its effectiveness against azole-resistant pathogens remains poorly documented. This in vitro study describes the association of Photogem (R) (Photogem, Moscow, Russia) with LED (light emitting diode) light for the photoinactivation of fluconazole-resistant (FR) and American Type Culture Collection (ATCC) strains of Candida albicans and Candida glabrata. Suspensions of each Candida strain were treated with five Photogem (R) concentrations and exposed to four LED light fluences (14, 24, 34 or 50 min of illumination). After incubation (48 h at 37 degrees C), colonies were counted (CFU ml-1). Single-species biofilms were generated on cellulose membrane filters, treated with 25.0 mg l-1 of Photogem (R) and illuminated at 37.5 J cm-2. The biofilms were then disrupted and the viable yeast cells present were determined. Planktonic suspensions of FR strains were effectively killed after PDT. It was observed that the fungicidal effect of PDT was strain-dependent. Significant decreases in biofilm viability were observed for three strains of C. albicans and for two strains of C. glabrata. The results of this investigation demonstrated that although PDT was effective against Candida species, fluconazole-resistant strains showed reduced sensitivity to PDT. Moreover, single-species biofilms were less susceptible to PDT than their planktonic counterparts.
Resumo:
Oligonucleotides have unique molecular recognition properties, being involved in biological mechanisms such as cell-surface receptor recognition or gene silencing. For their use in human therapy for drug or gene delivery, the cell membrane remains a barrier, but this can be obviated by grafting a hydrophobic tail to the oligonucleotide. Here we demonstrate that two oligonucleotides, one consisting of 12 guanosine units (G(12)), and the other one consisting of five adenosine and seven guanosine (A(5)G(7)) units, when functionalized with poly(butadiene), namely PB-G(12) and PB-A(5)G(7), can be inserted into Langmuir monolayers of dipalmitoyl phosphatidyl choline (DPPC), which served as a cell membrane model. PB-G(12) and PB-A(5)G(7) were found to affect the DPPC monolayer even at high surface pressures. The effects from PB-G(12) were consistently stronger, particularly in reducing the elasticity of the DPPC monolayers, which may have important biological implications. Multilayers of DPPC and nucleotide-based copolymers could be adsorbed onto solid supports, in the form of Y-type LB films, in which the molecular-level interaction led to lower energies in the vibrational spectra of the nucleotide-based copolymers. This successful deposition of solid films opens the way for devices to be produced which exploit the molecular recognition properties of the nucleotides. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Subtype F wild type HIV protease has been kinetically characterized using six commercial inhibitors (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) commonly used for HIV/AIDS treatment, as well as inhibitor TL-3 and acetylpepstatin. We also obtained kinetic parameters for two multi-resistant proteases (one of subtype B and one of subtype F) harboring primary and secondary mutations selected by intensive treatment with ritonavir/nelfinavir. This newly obtained biochemical data shows that all six studied commercially available protease inhibitors are significantly less effective against subtype F HIV proteases than against HIV proteases of subtype B, as judged by increased K(i) and biochemical fitness (vitality) values. Comparison with previously reported kinetic values for subtype A and C HIV proteases show that subtype F wild type proteases are significantly less susceptible to inhibition. These results demonstrate that the accumulation of natural polymorphisms in subtype F proteases yields catalytically more active enzymes with a large degree of cross-resistance, which thus results in strong virus viability.
Resumo:
Xylella fastidiosa is an important pathogen bacterium transmitted by xylem-feedings leafhoppers that colonizes the xylem of plants and causes diseases on several important crops including citrus variegated chlorosis (CVC) in orange and lime trees. Glutathione-S-transferases (GST) form a group of multifunctional isoenzymes that catalyzes both glutathione (GSH)-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GSTs are the major detoxification enzymes found in the intracellular space and mainly in the cytosol from prokaryotes to mammals, and may be involved in the regulation of stress-activated signals by suppressing apoptosis signal-regulating kinase 1. In this study, we describe the cloning of the glutathione-S-transferase from X. fastidiosa into pET-28a(+) vector, its expression in Escherichia coli, purification and initial structural characterization. The purification of recombinant xfGST (rxfGST) to near homogeneity was achieved using affinity chromatography and size-exclusion chromatography (SEC). SEC demonstrated that rxfGST is a homodimer in solution. The secondary and tertiary structures of recombinant protein were analyzed by circular dichroism and fluorescence spectroscopy, respectively. The enzyme was assayed for activity and the results taken together indicated that rxfGST is a stable molecule, correctly folded, and highly active. Several members of the GST family have been extensively studied. However, xfGST is part of a less-studied subfamily which yet has not been structurally and biochemically characterized. In addition, these studies should provide a useful basis for future studies and biotechnological approaches of rxfGST. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Control of human visceral leishmaniasis in endemic regions is hampered in part by the lack of knowledge with respect of the role reservoirs and vector. In addition, there is not yet an understanding of how non-symptomatic subclinical infection might influence the maintenance of infection in a particular locality. Of worrisome is the limited accessibility to medical care in places with emerging drug resistance. There is still no available protective vaccine either for humans or other reservoirs. Leishmania species are protozoa that express multiple antigens which are recognized by the vertebrate immune system. Since there is not one immunodominant epitope recognized by most hosts, strategies must be developed to optimize selection of antigens for prevention and immunodiagnosis. For this reason, we generated a cDNA library from the intracellular amastigote form of Leishmania chagasi, the causative agent of South American visceral leishmaniasis. We employed a two-step expression screen of the library to systematically identify T and T-dependent B cell antigens. The first step was aimed at identifying the largest possible number of clones producing an epitope-containing polypeptide with a pool of sera from Brazilians with documented visceral leishmaniasis. After removal of clones encoding heat shock proteins, positive clones underwent a second step screen for their ability to cause proliferation and IFN-γ responses of T cells from immune mice. Six unique clones were selected from the second screen for further analysis. The clones encoded part of the coding sequence of glutamine synthetase, transitional endoplasmic reticulum ATPase, elongation factor 1γ, kinesin K-39, repetitive protein A2, and a hypothetical conserved protein. Humans naturally infected with L. chagasi mounted both cellular and antibody responses to these protein Preparations containing multiple antigens may be optimal for immunodiagnosis and protective vaccines against Leishmania
Resumo:
Visceral leishmaniasis (VL) has undergone changes in terms of clinical and epidemiological presentation worldwide. Urbanization has been described in different regions of Brazil and the world, as well as in the state of Rio Grande do Norte. These changes have impacted in the clinical outcome of Leishmania infection. A new clinical entity called co-infection of HIV/Leishmania has been described as a consequence of overlapping areas of occurrence of VL and HIV / AIDS in different countries including Brazil. The aim of this study was to define the process of periurbanization of the LV and describe a case series of co-infection HIV / Leishmania in Rio Grande do Norte. A new demographic pattern of VL was detected, with an increase in the number VL adult male subjects. Analysis of spatial distribution of VL in the state of Rio Grande do Norte showed that in the past 20 years VL tends to occur in larger cities and therefore the highest risk disease is greater in the eastern and western regions. The first region included Natal, the state capital, where the process of suburbanization began in 1990, and more recently the city of Mossoró, the second largest state, where periurbanization began in the last five years. In 1990, the emergence of co-infection HIV/Leishmania in the state was observed. Case-control study revealed that the new clinical entity affects adult males, who acquired HIV through sexual intercourse, 40% of those with a preivous history of leishmania infection Relapse and death from LV is increased in HIV positive compared with HIV-negative patients matched by sex and age. This pattern is similar to the observed in Europe, except of the route of transmission, where in Europe occured concomitantly, by parenteral route in drug users. Analysis of spatial distribution identified overlapping new areas of occurrence of HIV / AIDS and LV potentially signaling to increased risk of this new clinical entity as described above. Therefore, epidemiological surveillance for co-infection HIV / Leishmania should be adopted in all areas of risk of VL. At the same time, it is necessary to evaluate drug resistance currently used in the treatment of VL, as well as parenteral transmission of L infantum/ chagasi in areas where drug dependence is a risk factor for HIV acquisition
Resumo:
New drug delivery systems have been used to increase chemotherapy efficacy due the possible drug resistance of cancer cells. Poly (lactic acid) (PLA) microparticles are able to reduce toxicity and prolong methotrexate (MTX) release. In addition, the use of PLA/poloxamer polymer blends can improve drug release due to changes in the interaction of particles with biological surfaces. The aim of this study was developing spray dried biodegradable MTX-loaded microparticles and evaluate PLA interactions with different kinds of Pluronic® (PLUF127 and PLUF68) in order to modulate drug release. The variables included different drug:polymer (1:10, 1:4.5, 1:3) and polymer:copolymer ratios (25:75, 50:50, 75:25). The precision and accuracy of spray drying method was confirmed assessing drug loading into particles (75.0- 101.3%). The MTX/PLA microparticles showed spherical shape with an apparently smooth surface, which was dependent on the PLU ratio used into blends particles. XRD and thermal analysis demonstrated that the drug was homogeneously dispersed into polymer matrix, whereas the miscibility among components was dependent on the used polymer:copolymer ratio. No new drug- polymer bond was identified by FTIR analysis. The in vitro performance of MTX-loaded PLA microparticles demonstrated an extended-release profile fitted using Korsmeyer- Peppas kinetic model. The PLU accelerated drug release rate possible due PLU leached in the matrix. Nevertheless, drug release studies carried out in cell culture demonstrated the ability of PLU modulating drug release from blend microparticles. This effect was confirmed by cytotoxicity observed according to the amount of drug released as a function of time. Thus, studied PLU was able to improve the performance of spray dried MTX-loaded PLA microparticles, which can be successfully used as carries for modulated drug delivery with potential in vivo application
Resumo:
Os objetivos deste trabalho foram confirmar a herança da resistência da PI 459025 (Rpp4) à ferrugem-asiática-da-soja e identificar marcadores moleculares do tipo RAPD, ligados a este gene de resistência, em populações de soja. Pelo cruzamento dos genitores contrastantes PI 459025 x Coodetec 208 obteve-se uma população, cujas populações das gerações F2 e F2:3 foram artificialmente infectadas e avaliadas quanto à reação ao fungo Phakopsora pachyrhizi, pelo tipo de lesão (RB - resistente e TAN - suscetível). Com os resultados da avaliação fenotípica, dois bulks foram obtidos com DNA de plantas homozigóticas resistentes e suscetíveis, respectivamente, pela análise de bulks segregantes. de 600 iniciadores RAPD aleatórios, foram identificados três com fragmentos polimórficos entre os bulks e parentais contrastantes quanto à resistência. Pela análise do qui-quadrado, confirmaram-se: a herança monogênica, com dominância completa quanto à resistência ao patógeno, e a segregação 3:1 para a presença de banda dos três marcadores. Os três marcadores são ligados respectivamente a 5,1, 6,3 e 14,7 cM de distância do loco de resistência, em fase de repulsão no grupo de ligação G, o que foi confirmado pela utilização do marcador microssatélite Satt288. Estes marcadores são promissores na seleção assistida para resistência à ferrugem-asiática-da-soja.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Devido a grande importância da cultura de Eucalyptus no Brasil, empresas do setor florestal têm buscado através de programas de melhoramento genético, reduzir as perdas de produção e atender a demanda do mercado de papel e celulose. Um exemplo, é a busca por genes de resistência a doenças, principalmente a ferrugem causada por Puccinia psidii Winter, que resulta em redução da produtividade em plantas altamente suscetíveis. No presente trabalho, mudas de Eucalyptus pertencentes a uma geração F1, provenientes do cruzamento controlado entre parentais híbridos E. grandis X E. urophylla, sendo eles resistente e suscetível, foram inoculadas com Puccinia psidii em casa de vegetação e acompanhadas até o aparecimento dos sintomas da ferrugem. Foram classificadas, em dois grupos: resistentes (ausência de sintomas) e suscetíveis (presença de sintomas e esporulação). As amostras de DNA foram comparadas com o uso de marcadores moleculares associado ao método de BSA (Bulked Segregant Analysis). O polimorfismo entre os grupos foi geneticamente relacionado ao loco que determina a característica de resistência ou sucetibilidade. Dentre os 720 primers testados, 19 foram polimórficos, porém, apenas o marcador AK 01 manteve-se presente, quando testado em todos os indivíduos da população, mostrando-se a uma distância genética estimada de 20 cM em repulsão ao gene de resistência.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)