924 resultados para DC motor control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experiment was conducted to investigate the persistence of the effect of ""bandwidth knowledge of results (KR)"" manipulated during the learning phase of performing a manual force-control task. The experiment consisted of two phases, an acquisition phase with the goal of maintaining 60% maximum force in 30 trials, and a second phase with the objective of maintaining 40% of maximum force in 20 further trials. There were four bandwidths of KR: when performance error exceeded 5, 10, or 15% of the target, and a control group (0% bandwidth). Analysis showed that 5, 10, and 15% bandwidth led to better performance than 0% bandwidth KR at the beginning of the second phase and persisted during the extended trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives In the present study we investigated the anti nociceptive, anti-inflammatory and antipyretic effects of 7-hydroxycoumarin (7-HC) in animal models. Methods The effects of oral 7-HC were tested against acetic acid-induced writhing, formalin test, tail flick test, complete Freund`s adjuvant (CFA)-induced hypemociception, carrageenan-induced paw oedema, lipopolysaccharide-induced fever and the rota rod test. Key findings 7-HC (3-60 mg/kg) produced a dose-related antinociception against acetic acid-induced writhing in mice and in the formalin test. In contrast, treatment with 7-HC did not prevent thermal nociception in the tail flick test. A single treatment with 7-HC, 60 mg/kg, produced a long-lasting antinociceptive effect against CFA-induced hypernociception, a chronic inflammatory pain stimulus. Notably, at 60 mg/kg per day over 4 days the administration of 7-HC produced a continuous antinociceptive effect against CFA-induced hypernociception. 7-HC (30-120 mg/kg) produced anti-inflammatory and antipyretic effects against carrageenan-induced inflammation and lipopolysaccharide-induced fever, respectively. Moreover, 7-HC was found to be safe with respect to ulcer induction. In the rota rod test, 7-HC-treated mice did not show any motor performance alterations. Conclusions The prolonged antinociceptive and anti-inflammatory effects of 7-HC, in association with its low ulcerogenic activity, indicate that this molecule might be a good candidate for development of new drugs for the control of chronic inflammatory pain and fever.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic cells (DC) undergo complex developmental changes during maturation. The MHC class H (MHC H) molecules of immature DC accumulate in intracellular compartments, but are expressed at high levels on the plasma membrane upon DC maturation. It has been proposed that the cysteine protease inhibitor cystatin C (CyC) plays a pivotal role in the control of this process by regulating the activity of cathepsin S, a protease involved in removal of the MHC H chaperone E, and hence in the formation of MHC H-peptide complexes. We show that CyC is differentially expressed by mouse DC populations. CD8(+) DC, but not CD4(+) or CD4(-)CD8(-) DC, synthesize CyC, which accumulates in MHC II(+)Lamp(+) compartments. However, II processing and MHC H peptide loading proceeded similarly in all three DC populations. We then analyzed MHC H localization and Ag presentation in CD8(+) DC, bone marrow-derived DC, and spleen-derived DC lines, from CyC-deficient mice. The absence of CyC did not affect the expression, the subcellular distribution, or the formation of peptide-loaded MHC II complexes in any of these DC types, nor the efficiency of presentation of exogenous Ags. Therefore, CyC is neither necessary nor sufficient to control MHC II expression and Ag presentation in DC. Our results also show that CyC expression can differ markedly between closely related cell types, suggesting the existence of hitherto unrecognized mechanisms of control of CyC expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Movement-related potentials (MRPs) associated with voluntary movements reflect cortical activity associated with processes Of movement preparation and movement execution. Early-stage pre-movement activity is reduced in amplitude in Parkinson's disease. However it is unclear whether this neurophysiological deficit relates to preparatory or execution-related activity, since previous studies have not been able to separate different functional components of MRPs. Motor imagery is thought to involve mainly processes of movement preparation, with reduced involvement of end-stage movement execution-related processes. Therefore, MRP components relating to movement preparation and execution may be examined separately by comparing MRPs associated with imagined and actual movements. In this study, MRPs were recorded from 14 subjects with Parkinson's disease and 10 age-matched control subjects while they performed a sequential button-pressing task, and while they imagined performance of the same task. Early-stage pre-movement activity was present in both Parkinson's disease patients and control subjects when they imagined movement, but was reduced in amplitude compared with that for actual movement. Movement execution-related components, arising predominantly from the primary motor cortex, were relatively unaffected in Parkinson's disease subjects. However motor preparatory processes, probably involving the supplementary motor area, were reduced in amplitude overall and abnormally prolonged, Indicating impaired termination following the motor response. Further this impaired termination of preparatory-phase activity was observed only in patients with more severe parkinsonian symptoms, and not in early-stage Parkinson's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substance-dependence is highly associated with executive cognitive function (ECF) impairments. However. considering that it is difficult to assess ECF clinically, the aim of the present study was to examine the feasibility of a brief neuropsychological tool (the Frontal Assessment Battery FAB) to detect specific ECF impairments in a sample of substance-dependent individuals (SDI). Sixty-two subjects participated in this study. Thirty DSM-IV-diagnosed SDI, after 2 weeks of abstinence, and 32 healthy individuals (control group) were evaluated with FAD and other ECF-related tasks: digits forward (DF), digits backward (DB), Stroop Color Word Test (SCWT), and Wisconsin Card Sorting Test (WCST). SDI did not differ from the control group on sociodemographic variables or IQ. However, SDI performed below the controls in OF, DB, and FAB. The SDI were cognitively impaired in 3 of the 6 cognitive domains assessed by the FAB: abstract reasoning, motor programming, and cognitive flexibility. The FAB correlated with DF, SCWT, and WCST. In addition, some neuropsychological measures were correlated with the amount of alcohol, cannabis, and cocaine use. In conclusion, SDI performed more poorly than the comparison group on the FAB and the FAB`s results were associated with other ECF-related tasks. The results suggested a negative impact of alcohol, cannabis, and cocaine use on the ECF. The FAB may be useful in assisting professionals as an instrument to screen for ECF-related deficits in SDI. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There remains a lack of solid evidence showing whether transcranial stimulation with weak alternating current (transcranial alternating current stimulation, tACS) can in fact induce significant neurophysiological effects. Previously, a study in which tACS was applied for 2 and 5 min with current density = 0.16-0.25 A/m(2) was unable to show robust effects on cortical excitability. Here we applied tACS at a significantly higher current density (0.80 A/m(2)) for a considerably longer duration (20 min) and were indeed able to demonstrate measurable changes to cortical excitability. Our results show that active 15 Hz tACS of the motor cortex (electrodes placed at C3 and C4) significantly diminished the amplitude of motor evoked potentials and decreased intracortical facilitation (ICF) as compared to baseline and sham stimulation. In addition, we show that our method of sham tACS is a reliable control condition. These results support the notion that AC stimulation with weak currents can induce significant changes in brain excitability; in this case, 15 Hz tACS led to a pattern of inhibition of cortical excitability. We propose that tACS may have a dampening effect on cortical networks and perhaps interfere with the temporal and spatial summation of weak subthreshold electric potentials. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: This study was conducted to investigate the success rate of using the facial motor evoked potential (FMEP) of orbicularis oculi and oris muscles for facial nerve function monitoring with use of a stepwise protocol, and its usefulness in predicting facial nerve outcome during cerebellopontine angle (CPA) surgeries. METHODS: FMEPs were recorded intraoperatively from 60 patients undergoing CPA surgeries. Transcranial electrocortical stimulation (TES) was performed using corkscrew electrodes positioned at hemispheric montage (C3/C4 and CZ). The contralateral abductor pollicis brevis muscle was used as the control response. Stimulation was always applied contralaterally to the affected side using 1, 3, or 5 rectangular pulses ranging from 200 to 600 V with 50 mu s of pulse duration and an interstimulus interval of 2 ms. Facial potentials were recorded from needles placed in the orbicularis oculi and oris muscles. RESULTS: FMEP from the orbicularis oris and oculi muscles could be reliably monitored in 86.7% and 85% of the patients, respectively. The immediate postoperative facial function correlated significantly with the FMEP ratio in the orbicularis oculi muscle at 80% amplitude ratio (P =.037) and orbicularis oris muscle at 35% ratio (P =.000). FMEP loss was always related to postoperative facial paresis, although in different degrees. CONCLUSION: FMEPs can be obtained reliably by using TES with 3 to 5 train pulses. Stable intraoperative FMEPs can predict a good postoperative outcome of facial function. However, further refinements of this technique are necessary to minimize artifacts and to make this method more reliable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson`s disease (PD) is considered a multisystem disorder involving dopaminergic, noradrenergic. serotoninergic. and cholinergic systems, characterized by motor and non-motor symptoms. The causes of the non-motor symptoms in PD are multifactorial and unlikely to be explained by single lesions However, several evidence link them to damage of specific brainstem nuclei Numerous brainstem nuclei are engaged in fundamental homeostatic mechanisms, including gastrointestinal regulation, pain perception, mood control, and sleep-wake cycles In addition, these nuclei are locally interconnected in a complex manner and are subject to supraspinal control. The objective of this review is to provide a better overview of the current knowledge about the consequences of the involvement of specific brainstem nuclei to the most prevalent non-motor symptoms occurring in PD The multidisciplinary efforts of research directed to these non-nigral brainstem nuclei, in addition to the topographical and chronological spread of the disease - especially in the prodromal stages of PD. are discussed (C) 2009 Elsevier B V. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. To investigate the effects of using bromazepam on the relative power in alpha while performing a typing task. Bearing in mind the particularities of each brain hemisphere, our hypothesis was that measuring the relative power would allow its to investigate the effects of bromazepam oil specific areas of the cortex. More, specifically, we expected to observe different patterns of powers in sensory-motor integration, attention and activation processes. Subjects and methods. The sample was made up of 39 subjects (15 males and 24 females) with a mean age of 30 +/- 10 years. The control (placebo) and experimental (3 mg and 6 mg of bromazepam) groups were trained ill the typing task with a randomised double-blind model. Results. A three-way ANOVA and Scheffe test were used to analyse interactions between the factors condition and moment, and between condition and sector Conclusions. The doses used ill this study facilitated motor performance of the typing task. Ill this study, the use of the drug did not prevent learning of the task, but it did appear to concentrate mental effort on more restricted and specific aspects of typing. It also seemed to influence the rhythm and effectiveness of the operations performed during mechanisms related to the encoding and storage often, information. Likewise, a predominance of activity was observed in the left (dominant) frontal area in the 3 mg bromazepam group, which indicates that this close of the drug affords the subject a greater degree of directionality of cortical activity for planning and performing the task. [REV NEUROL 2009; 49: 295-9]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. A fundamental aspect of planning future actions is the performance and control of motor tasks. This behaviour is done through sensory-motor integration. Aim. To explain the electrophysiological mechanisms in the cortex (modifications to the alpha band) that are involved in anticipatory actions when individuals have to catch a free-falling object. Subjects and methods. The sample was made up of 20 healthy subjects of both sexes (11 males and 9 females) with ages ranging between 25 and 40 years (32.5 +/- 7.5) who were free of mental or physical diseases (previous medical history); the subjects were right-handed (Edinburgh Inventory) and were not taking any psychoactive or psychotropic substances at the time of the study. The experiment consisted in a task in which subjects had to catch freely falling objects. The experiment was made up of six blocks of 15 tests, each of which lasted 2 minutes and 30 seconds before and two seconds after each ball was dropped. Results. An interaction of the factors moment and position was only observed for the right parietooccipital cortex, in the combination of electrodes P4-O2. Conclusion. These findings suggest that the right parietooccipital cortex plays an important role in increasing expectation and swiftness in the process of preparing for a motor task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated four polymorphisms located in the DC-SIGN (CD209) gene promoter region (positions -336, -332 -201 and -139) in DNA samples from four Brazilian ethnic groups (Caucasians, Afro-Brazilian, Asians and Amerindians) to establish the population distribution of these single-nucleotide polymorphisms (SNPs) and correlated DC-SIGN polymorphisms and infection in samples from human T-cell lymphotropic virus type 1 (HTLV-1)-infected individuals. To identify CD209 SNPs, 452 bp of the CD209 promoter region were sequenced and the genotype and allelic frequencies were evaluated. This is the first study to show genetic polymorphism in the CD209 gene in distinct Brazilian ethnic groups with the distribution of allelic and genotypic frequency. The results showed that -336A and -139A SNPs were quite common in Asians and that the -201T allele was not observed in Caucasians, Asians or Amerindians. No significant differences were observed between individuals with HTLV-1 disease and asymptomatic patients. However, the -336A variant was more frequent in HTLV-1 -infected patients [HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), 80%; healthy asymptomatic HTLV-1 carriers, 90 %] than in the control group (70 %) [P=0.0197, odds ratio (OR)=2.511, 95 % confidence interval (CI)=1.218-5.179). In addition, the -139A allele was found to be associated with protection against HTLV-1 infection (P=0.0037, OR=0.3758, 95% CI=0.1954-0.7229) when the HTLV-1 -infected patients as a whole were compared with the healthy-control group. These observations suggest that the -139A allele may be associated with HTLV-1 infection, although no significant association was observed among asymptomatic and HAM/TSP patients. In conclusion, the variation observed in SNPs -336 and -139 indicates that this lectin may be of crucial importance in the susceptibility/transmission of HTLV-1 infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the effects of motor stimulation via treadmill on the behavior of male gerbils after external carotid ischemic brain lesion. The animals were assigned to five groups; ischemic with no stimulation (SIG), ischemic with stimulation (SIG 12/24/48/72 It after surgery), non-ischemic with no stimulation (CC), non-ischemic with stimulation (CE) and sham, surgery without occlusion with no stimulation (SH). All the animals were tested in the open-field (OF) and rotarod (RR), 4 days after surgery in order to evaluate exploratory behaviors and motor performance. Data were submitted to one-way variance (ANOVA) and Dunnett`s post hoc comparisons. SIG and SIG 12 groups showed a significant decrease in motor response (crossing) when compared to the control group (CC) (F = 20.65, P < 0.05) in the OF. SIG 12 group showed an increase in grooming behavior (F = 23.136, P < 0.05) and all ischemia groups (SIG, SIG 12/24/48/72) spent less time on the RR (F = 10.40, P < 0.05), when compared to the control group (CC). Histological analyses show extensive lesions in the hippocampus and neostriatum for all groups with ischemia (SIG, SIG 12/24/48/72), which are structures involved in the organization of motor behavior. Interestingly, the most pronounced damage was found in animals submitted to motor stimulation 12 h after ischemia which can be correlated to the increased number of grooming behavior showed by them in the OF. These findings suggest that motor stimulation through treadmill training improve motor behavior after ischemia, except when it starts 12h after surgery. (c) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prenatal lipopolysaccharide (LPS) exposure causes reproductive, behavioral and neurochemical injuries in both the mother and pups. Previous investigations by our group showed that prenatal LPS administration (100 mu g/kg, i.p.) on gestational day 9.5 impaired the male offspring`s social behavior in infancy and adulthood. In the present study, we investigated whether these social behavioral changes were associated with motor activity impairment. Male rat pups treated prenatally with LPS or not were tested for reflexological development and open field general activity during infancy. In adulthood, animals were tested for open field general activity, haloperidol-induced catalepsy and apomorphine-induced stereotypy; striatal dopamine levels and turnover were also measured. Moreover, LPS-treated or untreated control pups were challenged with LPS in adulthood and observed for general activity in the open field. In relation to the control group, the motor behavior of prenatally treated male pups was unaffected at basal levels, both in infancy and in adulthood, but decreased general activity was observed in adulthood after an immune challenge. Also, striatal dopamine and metabolite levels were decreased in adulthood. In conclusion, prenatal LPS exposure disrupted the dopaminergic system involved with motor function, but this neurochemical effect was not accompanied by behavioral impairment, probably due to adaptive plasticity processes. Notwithstanding, behavioral impairment was revealed when animals were challenged with LPS, resulting in enhanced sickness behavior. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monoamines (noradrenaline (NA), adrenaline (AD), dopamine (DA) and serotonin (5-HT) are key neurotransmitters that are implicated in multiple physiological and pathological brain mechanisms, including control of respiration. The monoaminergic system is known to be widely distributed in the animal kingdom, which indicates a considerable degree of phylogenetic conservation of this system amongst vertebrates. Substantial progress has been made in uncovering the participation of the brain monoamines in the breathing regulation of mammals, since they are involved in the maturation of the respiratory network as well as in the modulation of its intrinsic and synaptic properties. On the other hand, for the non-mammalian vertebrates, most of the knowledge of central monoaminergic modulation in respiratory control, which is actually very little, has emerged from studies using anuran amphibians. This article reviews the available data on the role of brain monoaminergic systems in the control of ventilation in terrestrial vertebrates. Emphasis is given to the comparative aspects of the brain noradrenergic, adrenergic, dopaminergic and serotonergic neuronal groups in breathing regulation, after first briefly considering the distribution of monoaminergic neurons in the vertebrate brain. (C) 2008 Elsevier B.V. All rights reserved.