930 resultados para Curing salts
Resumo:
Fruit drop can cause major yield losses in Australian lychee orchards, the severity varying with cultivar and season. Research in China, South Africa and Israel has demonstrated the potential for synthetic auxins used as foliar sprays to reduce fruit drop in lychee. Trials tested the efficacy of the synthetic auxin 3-5-6 trichloro-2-phridyl-oxyacetic acid (TPA) applied as a foliar spray at 50 ppm on fruit drop and fruit size on the cultivars ‘Fay Zee Siu’, ‘Kaimana’, ‘Kwai Mai Pink’, ‘Souey Tung’ and ‘Tai So’. TPA reduced fruit drop when applied to fruit greater than 12 mm in length but increased fruit drop when fruit were smaller. Fruit size at the time of application had less effect on the response than the level of natural fruit drop. When natural fruit drop was high, TPA significantly reduced it; by up to 18.7 in ‘Fay Zee Siu’, 37.1 in ‘Kaimana’, 39.8 in ‘Kwai Mai Pink’, 15.1 in ‘Souey Tung’ and 7.7 in ‘Tai So’. TPA was less effective when natural fruit drop was low. TPA increased the number of large fruit and frequently increased the number of small fruit at harvest. The small fruit were associated with an increase in the retention of fruit with poorly developed (chicken tongue) seed. Average fruit size was generally larger (up to 12.7 in ‘Souey Tung’ and 22 in ‘Tai So’) with TPA applications.
Resumo:
A study undertaken in Hervey Bay, Queensland, investigated the potential of creating an indigenous agribusiness opportunity based on the cultivation of indigenous Australian vegetables and herbs. Included were warrigal greens (WG) (Tetragonia tetragonioides), a green leafy vegetable and the herb sea celery (SC) (Apium prostratum); both traditional foods of the indigenous population and highly desirable to chefs wishing to add a unique, indigenous flavour to modern dishes. Packaging is important for shelf life extension and minimisation of postharvest losses in horticultural products. The ability of two packaging films to extend WG and SC shelf life was investigated. These were Antimisted Biaxial Oriented Polypropylene packaging film (BOPP) without perforations and Antifog BOPP Film with microperforations. Weight loss, packaging headspace composition, colour changes, sensory differences and microbial loads of packed WG and SC leaves were monitored to determine the impact of film oxygen transmission rate (OTR) and film water vapour transmission (WVT) on stored product quality. WG and SC were harvested, sanitised, packed and stored at 4°C for 16 days. Results indicated that the OTR and WVT rates of the package film significantly (PKLEINERDAN0.05) influenced the package headspace and weight loss, but did not affect product colour, total bacteria, yeast and mould populations during storage. There was no significant difference (PGROTERDAN0.05) in aroma, appearance, texture and flavour for WG and SC during storage. It was therefore concluded that a shelf life of 16 days at 4°C, where acceptable sensory properties were retained, was achievable for WG and SC in both packaging films.
Resumo:
The crown ethers, 2,3-benzo-1,4,7,10,13-pentaoxa-cyclopentadeca-2-ene and 2,3, ll,12-dibenzo-l,4,7,10,13,16-hexaoxscyclooctadeca-2,11-diene are incorporated into H,N'-ethylenebis(acetylacetoneimino) nickel(II) and copper(II), phenol, and β-naphthol by diazo coupling reactions. The selective nature of the coupling reaction has-been demonstrated by the isolation of both asymmetric mono- and symmetric bis(glyoxalarylcrownhydrazoneimino) metal(II) complexes. An interesting binuclear complex containing two intramolecularly rearranged (glyoxal-hydrazonearylimino) metal(II) groups joined by 18-crown-6 result8 when bis(arenediazonium)-18-crown-6 is coupled with the metal(I1) Schiff bases. The substituted ethers form cationic salts with NaClO4, KCNS, NH4CNS, 14g(CNS)2 and Ca(CNS)2. All the synthesised ethers exhibit ion selectivity sequence as K+ > Na+ and Ca2+ > Mg2+.
Resumo:
Syntheses and structural characterization of Ni(II) chelates of a new series of symmetric and unsymmetric tetradentate linear ligands are described. Preparative routes involve either the direct reaction between a metal complex and arene diazonium diazonium salts or a simple metal incorporation into the independently synthesized ligands. Recent X-ray structure determination of 4,9-dimethyl-5,8-diazadodeca-4,8-diene-2,11-dione-3,10-di(4′-methyl phenyl) hydrazonatonickel(II) complex reveals the geometry around the Ni(II) to be very close to square planar. The expected distortion because of the disposition of bulky aromatic groups on the neighbouring nitrogens is minimized by their projection in the opposite directions from the plane. PMP, IR and electronic spectral data for the complexes are quite in agreement with this structure.
Resumo:
The effect of past mechanical history on the subsequent thermal decomposition kinetics of sodium, potassium, rubidium and caesium perchlorates, has been investigated. At low temperatures the decomposition of all these salts is significantly sensitized by pre-compression. At high temperatures, however, prior compression results in a lowered decomposition rate in the case of potassium, rubidium and caesium perchlorates and in an increase in the thermal reactivity of sodium perchlorate. The high temperature behaviour is shown to be an indirect consequence of the low temperature behaviour. The difference in behaviour between sodium perchlorate and the other alkali metal perchlorates is explained on the basis of the stability of the respective chlorates, formed during the low temperature decomposition. This is substantiated by experiments which show that the addition of sodium chlorate to sodium perchlorate brings about a sensitization while potassium perchlorate admixed with potassium chlorate results in a desensitization at high temperatures.
Resumo:
BACKGROUND The emergence of high levels of resistance in Cryptolestes ferrugineus (Stephens) in recent years threatens the sustainability of phosphine, a key fumigant used worldwide to disinfest stored grain. We aimed at developing robust fumigation protocols that could be used in a range of practical situations to control this resistant pest. RESULTS Values of the lethal time to kill 99.9% (LT99.9, in days) of mixed-age populations, containing all life stages, of a susceptible and a strongly resistant C. ferrugineus population were established at three phosphine concentrations (1.0, 1.5 and 2.0 mg L−1) and three temperatures (25, 30 and 35 °C). Multiple linear regression analysis revealed that phosphine concentration and temperature both contributed significantly to the LT99.9 of a population (P < 0.003, R2 = 0.92), with concentration being the dominant variable, accounting for 75.9% of the variation. Across all concentrations, LT99.9 of the strongly resistant C. ferrugineus population was longest at the lowest temperature and shortest at the highest temperature. For example, 1.0 mg L−1 of phosphine is required for 20, 15 and 15 days, 1.5 mg L−1 for 12, 11 and 9 days and 2.0 mg L−1 for 10, 7 and 6 days at 25, 30 and 35 °C, respectively, to achieve 99.9% mortality of the strongly resistant C. ferrugineus population. We also observed that phosphine concentration is inversely proportional to fumigation period in regard to the population extinction of this pest. CONCLUSION The fumigation protocols developed in this study will be used in recommending changes to the currently registered rates of phosphine in Australia towards management of strongly resistant C. ferrugineus populations, and can be repeated in any country where this type of resistance appears. © 2014 Commonwealth of Australia. Pest Management Science © 2014 Society of Chemical Industry
Resumo:
Continuous slurry reactor runs of two to four weeks duration were carried out for catalyzed air oxidation of thiosalts under a variety of conditions using poly (4-vinylpyridine) - Cu (II) and quaternized poly (4-vinylpyridine) - Cu (II) catalysts. Results obtained indicate that these catalysts have high activity and relatively long-term catalyst stability for thiosalt waste streams of < 1000 ppm thiosalt level. Using 2% (w/w) slurries of the poly (4-vinylpyridine) Cu (II) catalyst, effective oxidation of 700 ppm S2O32− influent to an effluent of < 100 ppm total thio-salts can be carried out continuously for at least one month when operating at 20 to 30°C with solution flow rates of$˜1l/h and aeration of 1300 XXX/h using a two-stage reactor system comprised of 12 l reactors. At higher thiosalt influent levels (i.e. > 1600 ppm) increased reaction temperatures enable depletion to < 100 ppm thiosalt effluent levels for up to one week of continuous operation. The catalysts deactivate much more readily at these higher influent levels as a result of greater copper losses and appreciable adsorption of S2O32− and S4O62−. The behaviour of continuous slurry reactors employed in the experimental studies, by use of batch reaction data for the poly (4-vinylpyridine) Cu (II) catalyzed oxidation of thiosalts, can be modelled successfully. Quaternized poly (4-vinylpyridine) Cu (II) catalyst has good long-term stability and copper losses are very low. The poly (4-vinylpyridine) Cu (II) catalyst, however, is susceptible to appreciable oxidation of the polymer matrix on long-term usage. This oxidation of the polymer matrix results in a substantial loss in the activity of the regenerated catalyst.
Resumo:
A commercial issue currently facing native plant food producers and food processors, and identified by the industry itself, is that of delivering quality products consistently and at reasonable cost to end users based on a sound food technology and nutrition platform. A literature survey carried out in July 2001 by the DPI&F’s Centre for Food Technology, Brisbane in collaboration with the University of Queensland to collect the latest information at that time on the functional food market as it pertained to native food plants, indicated that little or no work had been published on this topic. This project addresses two key RIRDC sub program strategies: to identify and evaluate processes or products with prospects of commercial viability and to assist in the development of integrated production, harvesting, processing and marketing systems. This project proposal also reflects a key RIRDC R&D issue for 2002-2003; that of linking with prospective members of the value chain. The purpose of this project was to obtain chemical data on the post harvest stability of functional nutritional components (bio actives) in commercially available, hand harvested bush tomato and Kakadu plum. The project concentrated on evaluating bioactive stability as a measure of ingredient quality.
Resumo:
Variety selection in perennial pasture crops involves identifying best varieties from data collected from multiple harvest times in field trials. For accurate selection, the statistical methods for analysing such data need to account for the spatial and temporal correlation typically present. This paper provides an approach for analysing multi-harvest data from variety selection trials in which there may be a large number of harvest times. Methods are presented for modelling the variety by harvest effects while accounting for the spatial and temporal correlation between observations. These methods provide an improvement in model fit compared to separate analyses for each harvest, and provide insight into variety by harvest interactions. The approach is illustrated using two traits from a lucerne variety selection trial. The proposed method provides variety predictions allowing for the natural sources of variation and correlation in multi-harvest data.
Resumo:
The effects of pretreatments on the sublimation of pure ammonium perchlorate (AP) were studied by differential thermal analysis. The addition of inorganic salts (doping), or preheating, lead to desensitisation of the sublimation process, whereas it was sensitised by precompression. Sublimation increased with decrease in the particle size of the AP from 500 to 200 microns, but decreased with a further decrease in size from 200 to 100 microns. The results are interpreted in terms of gross imperfections and strain in the AP crystals.